Abstract 51P
Background
Challenges persist in CAR-T cell therapy for solid tumors, notably due to immune exhaustion within the tumor microenvironment. Mesothelin (MSLN) has emerged as a pivotal target for CAR-T therapy in ovarian cancer, yet overcoming functional exhaustion remains a critical hurdle. This study explores the role of lipid metabolites in modulating anti-MSLN CAR-T cell exhaustion, aiming to enhance therapeutic outcomes.
Methods
Anti-MSLN CAR-T cells were engineered to target ovarian cancer cells with high MSLN expression for in vitro and in vivo experiments. Liquid chromatography-tandem mass spectrometry (LC-MS/MS) identified oxylipin 12-HETE as critical in CAR-T cell exhaustion. High-throughput virtual screening (HTVS) identified an inhibitor targeting B7-H3.
Results
Our findings demonstrate that increased infiltration of T cells within mouse tumor models correlates with reduced tumor burden, attributed to 12-HETE-induced lipid peroxidation mediated via the GPR31 pathway. This process significantly impairs cancer cell viability and cytotoxic functionality of CAR-T cells. Mechanistically, we elucidate that interaction between the B7-H3 protein and HRAS in ovarian cancer cells inhibits FOXO3 regulatory activity, subsequently influencing 12-LOX expression critical in lipid metabolism regulation. Importantly, HTVS identified HI-TOPK-032 as an effective inhibitor that restores CAR-T cell infiltration and functionality, synergizing notably with anti-PD-1 blockade. Notably, HI-TOPK-032 amplifies the anticancer effects of CAR-T cells in patient-derived xenograft models of ovarian cancer characterized by elevated B7-H3 and 12-LOX expression.
Conclusions
This study underscores the pivotal role of lipid metabolism in CAR-T cell therapy efficacy against MSLN-expressing solid tumors. Our findings highlight the innovative strategy of targeting lipid pathways to mitigate immune exhaustion, presenting HI-TOPK-032 as a promising adjunct to enhance CAR-T cell therapy outcomes. These insights advance the understanding of immune modulation in ovarian cancer and propose a novel therapeutic approach poised for clinical translation.
Legal entity responsible for the study
The authors.
Funding
Capital Medical University Laboratory for Clinical Medicine and Gynecological Tumor Precise Diagnosis and Treatment Innovation Studio.
Disclosure
All authors have declared no conflicts of interest.
Resources from the same session
226P - Profiling of gastric adenocarcinomas from EU and LATAM countries identifies distinct tumor immune subgroups and a central role of the tumor microbiome in shaping the immune microenvironment
Presenter: Manuel Cabeza Segura
Session: Poster Display session
228P - Modulating mitochondrial dynamics in TAMs to enhance anti-tumor immunity
Presenter: Pu-ste Liu
Session: Poster Display session
Resources:
Abstract
229P - Investigation of the effects of long-noncoding RNA NRAV on interferon response in melanoma
Presenter: Kadir Durmus
Session: Poster Display session
230P - Deciphering the mechanism of immunosuppressive activity of acetaminophen in the context of cancer immunotherapy
Presenter: Jeanne Lena
Session: Poster Display session
231P - The impact of calcitriol and tacalcitol on the Th17 lymphocytes in breast cancer
Presenter: Beata Filip-Psurska
Session: Poster Display session