Abstract 199P
Background
Highly multiplexed tissue imaging (HMTI) technologies have enabled the in-depth characterization of the tumor immune microenvironment (TIME) and how it relates to patient prognosis and treatment success. To analyze the TIME across breast, head and neck, colorectal, lung, and kidney cancer, the Integrated iMMUnoprofiling of large adaptive CANcer patient cohorts (IMMUcan) consortium performs broad molecular and cellular profiling of more than 2500 cancer patients, associated with longitudinal clinical data. As part of IMMUcan, multiplexed immunofluorescence (mIF) imaging detects major cell phenotypes across whole tissue slides while imaging mass cytometry (IMC) provides a zoomed in view on local cell phenotype interactions.
Methods
We developed two computational pipelines to process and analyze mIF and IMC data. The analysis of mIF data is supported by IFQuant, a web-based tool for image analysis that facilitates user-guided cell phenotyping. IMC data is analyzed using a workflow encompassing image analysis and machine learning-based cell phenotyping. Various computational approaches have been developed for the spatial analysis of HMTI data. First, the tysserand package allows the construction of spatial networks from which the mosna package computes cell phenotype assortativity scores. Second, the Spacelet and Cellohood models were developed to analyze higher-order interactions between cell phenotypes in tumor tissues.
Results
Based on a selected set of ten samples from five cancer indications, we validate that all major cell phenotypes as detected by the two computational pipelines show high correlation between mIF and IMC. The computed assortativity measures can be used for the definition of cellular niches and patient stratification. The Spacelet and Cellohood models allow the association of gradients of immune infiltration patterns and cellular neighborhoods to clinical data.
Conclusions
We have developed scalable computational tools for the analysis of mIF and IMC data within the IMMUcan consortium. These form a crucial foundation for the robust extraction of molecular features across five cancer indications facilitating patient stratification and clinical association studies.
Legal entity responsible for the study
EORTC.
Funding
IMI2 JU grant agreement 821558, supported by EU’s Horizon 2020 and EFPIA.
Disclosure
All authors have declared no conflicts of interest.
Resources from the same session
136P - Circadian rhythm positioned chronomodulated-SBRT with Cancer associated fibroblast elimination theranostic treatment to harmonize resistant TFG-Beta stromal microenvironment in conjunction with PDL-1 based immunotherapy in disseminated cancers-Concept randomised study.
Presenter: G Lohith
Session: Poster Display
137P - First-in-human results from a Phase I dose-escalation study of VSV-GP (BI 1831169) in patients with advanced solid tumors
Presenter: Stephane Champiat
Session: Poster Display
138P - Generation of frameshift mutated TGF_R2-specific T cells in healthy subjects following administration with cancer vaccine candidate FMPV-1/GM-CSF
Presenter: Else Inderberg
Session: Poster Display
139P - Safety and clinical activity of a novel anti-CCR8 antibody (LM-108) as a single agent or in combination with pembrolizumab in patients with advanced solid tumors: Results of phase 1 study
Presenter: Alexander Starodub
Session: Poster Display
140P - Eliciting mAbs targeting MHC-bound peptides with a novel antibody discovery platform
Presenter: Elli Sandberg
Session: Poster Display
141P - An IgE antibody targeting the melanoma-associated Chondroitin Sulfate Proteoglycan 4
Presenter: Lais Cristina Palhares
Session: Poster Display
142P - Identifying novel immunotherapy targets using machine learning and ex vivo validation
Presenter: Marcellus Augustine
Session: Poster Display
143P - Advancing Cancer Immunotherapy via HLA-G Pathway Modulation with UCB4594
Presenter: Ann WHITE
Session: Poster Display
144P - Discovery of CBO421, a first-in-class Drug Fc-Conjugate (DFC), targeting CD73 in Cancer
Presenter: Simon Döhrmann
Session: Poster Display
145P - An Engineered Ligand-Trap Biologic Targeting the CD47 Signaling Pathway for Cancer Treatment with Superb Efficacy and Safety Profiles
Presenter: ZONG SEAN JUO
Session: Poster Display