Abstract 199P
Background
Highly multiplexed tissue imaging (HMTI) technologies have enabled the in-depth characterization of the tumor immune microenvironment (TIME) and how it relates to patient prognosis and treatment success. To analyze the TIME across breast, head and neck, colorectal, lung, and kidney cancer, the Integrated iMMUnoprofiling of large adaptive CANcer patient cohorts (IMMUcan) consortium performs broad molecular and cellular profiling of more than 2500 cancer patients, associated with longitudinal clinical data. As part of IMMUcan, multiplexed immunofluorescence (mIF) imaging detects major cell phenotypes across whole tissue slides while imaging mass cytometry (IMC) provides a zoomed in view on local cell phenotype interactions.
Methods
We developed two computational pipelines to process and analyze mIF and IMC data. The analysis of mIF data is supported by IFQuant, a web-based tool for image analysis that facilitates user-guided cell phenotyping. IMC data is analyzed using a workflow encompassing image analysis and machine learning-based cell phenotyping. Various computational approaches have been developed for the spatial analysis of HMTI data. First, the tysserand package allows the construction of spatial networks from which the mosna package computes cell phenotype assortativity scores. Second, the Spacelet and Cellohood models were developed to analyze higher-order interactions between cell phenotypes in tumor tissues.
Results
Based on a selected set of ten samples from five cancer indications, we validate that all major cell phenotypes as detected by the two computational pipelines show high correlation between mIF and IMC. The computed assortativity measures can be used for the definition of cellular niches and patient stratification. The Spacelet and Cellohood models allow the association of gradients of immune infiltration patterns and cellular neighborhoods to clinical data.
Conclusions
We have developed scalable computational tools for the analysis of mIF and IMC data within the IMMUcan consortium. These form a crucial foundation for the robust extraction of molecular features across five cancer indications facilitating patient stratification and clinical association studies.
Legal entity responsible for the study
EORTC.
Funding
IMI2 JU grant agreement 821558, supported by EU’s Horizon 2020 and EFPIA.
Disclosure
All authors have declared no conflicts of interest.
Resources from the same session
126P - Evaluation of Myeloid Targeting Agents, PY159 and PY314, in Two Dose Expansion Phase 1b Trials in Platinum-Resistant Ovarian Cancer
Presenter: Oladapo Yeku
Session: Poster Display
116TiP - Randomized, open-label, phase II study of botensilimab (BOT) alone and in combination with balstilimab (BAL) versus standard-of-care in patients with refractory metastatic colorectal cancer
Presenter: Eric Van Cutsem
Session: Poster Display
127P - REGN5668 (MUC16xCD28 bispecific antibody) with cemiplimab (anti-PD-1 antibody) in recurrent ovarian cancer: Phase 1 dose-escalation study
Presenter: Ira Winer
Session: Poster Display
128P - A phase I dose escalation and expansion trial of LYT-200, a Galectin-9 antibody +/- tislelizumab
Presenter: Gerald Falchook
Session: Poster Display
129P - Naxitamab efficacy in patients with refractory/relapsed high-risk neuroblastoma and bone metastases as assessed by Curie score
Presenter: Brian Kushner
Session: Poster Display
131P - Safety and clinical efficacy of Roginolisib (IOA-244), the first oral allosteric modulator of phosphoinositide 3-kinase inhibitor delta (PI3K_)
Presenter: Anna Di Giacomo
Session: Poster Display
132P - A phase I clinical trial of QLS31905 in advanced solid tumors
Presenter: Yakun Wang
Session: Poster Display
133P - Phase 1/2 study of XTX101, a masked, tumor-activated Fc-enhanced anti-CTLA-4, in patients with advanced solid tumors
Presenter: Diwakar Davar
Session: Poster Display
134P - A Phase 1 Study Exploring the Safety and Tolerability of the Small Molecule PD-L1 Inhibitor INCB099318 in Select Advanced Solid Tumors
Presenter: David Pinato
Session: Poster Display
135P - Isunakinra as Monotherapy and Combined with Nivolumab for Treatment Resistant Advanced Solid Tumours: Exploratory Effect Data, Tolerability, and Pharmacokinetics from a Dose Escalation Trial
Presenter: Carlos Becerra
Session: Poster Display