Abstract 145P
Background
Macrophages exert their functions mainly through SIRPa receptor, which interacts with CD47 on cellular targets. As many cancer cells overexpress CD47 to evade immune surveillance, blocking SIRPa-CD47 interaction represents a promising approach to control tumor progression. The clinical progress of anti-CD47 antibodies were hindered by either side effects or lacking appreciable efficacy. To overcome this dilemma, we engineered a SIRPa-fusion protein that exhibits superior efficacy against multiple tumor types while maintaining good safety profiles.
Methods
Using structure-guided protein engineering, we selected a SIRPa mutant that exhibited marked phagocytic abilities against tumors while maintaining good safety features on normal cells. To assess the efficacy of this molecule, it was tested in multiple xenograft mouse models alongside competing biologics currently in clinical trials. We also performed quantitative RNA transcriptional analysis to evaluate the changes in gene expression inside tumor and in the tumor microenvironment.
Results
Comparing to other clinical candidates, HCB101 triggered strong phagocytic reactions against tumor cells but not red blood cells. We have analyzed 14 human tumor xenograft models, HCB101 consistently showed excellent efficacy against heme and solid tumors, with tumor growth inhibition index ranging from 60-100% at the dose of 0.5-10mg/kg over placebo. We also observed an increase in M1/M2 macrophage ratio after the treatment with HCB101, which correlated with the observed anti-tumor efficacy. Quantitative RNA transcriptional analysis indicated that HCB101 triggered drastic changes in gene expression comparing to other competing molecules. This suggested a unique MOA underlying HCB101’s superior efficacy. There was no apparent adverse reaction observed during the toxicology studies, indicating a good safety profile.
Conclusions
Comparing to relevant clinical candidates, HCB101 exhibits superior efficacy in 14 different CDX models of hemotological and solid tumors while maintaining good safety profiles. It is a highly effective biologic with robust efficacy, both as monotherapy and in combination. Clinical trial of HCB101 is now in progress.
Clinical trial identification
NCT05892718.
Legal entity responsible for the study
HanchorBio, Inc.
Funding
HanchorBio, Inc.
Disclosure
All authors have declared no conflicts of interest.
Resources from the same session
1P - Integrated Data Analysis within IMMUcan Identifies Prognostic Features of Early NSCLC
Presenter: Daniel Schulz
Session: Poster Display
3P - Exploratory efficacy analysis by smoking status in PD-L1 high patients in the phase III, non-small cell lung cancer (NSCLC) IMpower110 study
Presenter: Luis Paz-Ares
Session: Poster Display
4P - Immune exoproteome, soluble proteome and immune-related gene expression profiles of anti-PD-1 therapy in stage IIIB/IV Non-Small Cell Lung Cancer: relevance of immunosuppressive factors
Presenter: Paulo Santos
Session: Poster Display
5P - Blood immune-inflammatory dynamic unveils distinctive irAE features in ICI treated NSCLC
Presenter: Giulia Mazzaschi
Session: Poster Display
6P - CD161+CD127+CD8+ T cells as a critical predictor of the efficacy of anti-PD-1 immunotherapy in diabetic patients with non-small cell lung cancer
Presenter: Jingjing Qu
Session: Poster Display
7P - A T-cell-derived circulating DNA as a biomarker for response to anti-PD(L)1 immunotherapy in advanced stage non-small cell lung cancer
Presenter: Nuthchaya Mejun
Session: Poster Display
9P - Primary NSCLC patient-derived microtumors (PMTs) for clinical-relvant prediction of immunotherapy efficacy
Presenter: Fabienne Nocera
Session: Poster Display
11P - Decreased monocyte-to-lymphocyte ratio was associated with satisfied outcomes of first-line PD-1 inhibitors plus chemotherapy in stage IIIB-IV non-small cell lung cancer
Presenter: Liang Zheng
Session: Poster Display
12P - Spatially preserved multi-region transcriptomic subtyping and biomarkers associated with long-term benefit with chemoimmunotherapy in extensive-stage small cell lung cancer (ES-SCLC)
Presenter: Melina Peressini Álvarez
Session: Poster Display