Abstract 199P
Background
Highly multiplexed tissue imaging (HMTI) technologies have enabled the in-depth characterization of the tumor immune microenvironment (TIME) and how it relates to patient prognosis and treatment success. To analyze the TIME across breast, head and neck, colorectal, lung, and kidney cancer, the Integrated iMMUnoprofiling of large adaptive CANcer patient cohorts (IMMUcan) consortium performs broad molecular and cellular profiling of more than 2500 cancer patients, associated with longitudinal clinical data. As part of IMMUcan, multiplexed immunofluorescence (mIF) imaging detects major cell phenotypes across whole tissue slides while imaging mass cytometry (IMC) provides a zoomed in view on local cell phenotype interactions.
Methods
We developed two computational pipelines to process and analyze mIF and IMC data. The analysis of mIF data is supported by IFQuant, a web-based tool for image analysis that facilitates user-guided cell phenotyping. IMC data is analyzed using a workflow encompassing image analysis and machine learning-based cell phenotyping. Various computational approaches have been developed for the spatial analysis of HMTI data. First, the tysserand package allows the construction of spatial networks from which the mosna package computes cell phenotype assortativity scores. Second, the Spacelet and Cellohood models were developed to analyze higher-order interactions between cell phenotypes in tumor tissues.
Results
Based on a selected set of ten samples from five cancer indications, we validate that all major cell phenotypes as detected by the two computational pipelines show high correlation between mIF and IMC. The computed assortativity measures can be used for the definition of cellular niches and patient stratification. The Spacelet and Cellohood models allow the association of gradients of immune infiltration patterns and cellular neighborhoods to clinical data.
Conclusions
We have developed scalable computational tools for the analysis of mIF and IMC data within the IMMUcan consortium. These form a crucial foundation for the robust extraction of molecular features across five cancer indications facilitating patient stratification and clinical association studies.
Legal entity responsible for the study
EORTC.
Funding
IMI2 JU grant agreement 821558, supported by EU’s Horizon 2020 and EFPIA.
Disclosure
All authors have declared no conflicts of interest.
Resources from the same session
189P - The impact of immune microenvironment subopopulations on soft tissue sarcomas
Presenter: Shokhrukhbek Khujaev
Session: Poster Display
190P - Immune-related roles of B7H3 in glioblastoma
Presenter: Arnaud Simonet
Session: Poster Display
191P - Senolytic treatment remodels glioblastoma microenvironment
Presenter: Alexa Saliou
Session: Poster Display
192P - Analysis of Tumor-Associated Macrophages and Tumor-infiltrating Lymphocytes within the Tumor Microenvironment of Primary Tumors and Matched Brain Metastases
Presenter: Markus Kleinberger
Session: Poster Display
193P - Engagement of sialylated glycans with Siglec receptors on suppressive myeloid cells inhibit anti-cancer immunity via CCL2
Presenter: Ronja Wieboldt
Session: Poster Display
194P - Achieving Reproducible Maturation Staging of Tertiary Lymphoid Structures: from Imaging Mass Cytometry Data to Pathology Applications
Presenter: Marion Le Rochais
Session: Poster Display
195P - IMMUcan - Toward a better understanding of the tumor microenvironment to inform precision oncology approaches.
Presenter: Marie Morfouace
Session: Poster Display
196P - Local glycan engineering induces systemic antitumor immune reactions via antigen cross-presentation
Presenter: Natalia Rodrigues Mantuano
Session: Poster Display
197P - Computational pathology pipeline enables quantification of intratumor heterogeneity and tumor-infiltrating lymphocyte score
Presenter: Daniel Tiezzi
Session: Poster Display
198P - Polarization of tumor-associated macrophages enhanced by 2-HP-_-cyclodextrin modified PLGA nanoparticles
Presenter: HAO YUAN
Session: Poster Display