Abstract 56P
Background
FOXM1D functions through interactions with proteins. We found that FOXM1D decreased in peripheral blood immune cells of renal cancer patients. It is speculated that FOXM1D is likely to regulate the expression level of immune checkpoint in immune cells through the way of interprotein interaction, and regulating the transcription of PD-1.
Methods
We detected the FD level in PBMC and CD3-positive T cells in clinical samples. PD-1 expression was detected. We performed mass spectrometry and found that HCFC1 function as a cotranscription factor. We examined the effect of FOXM1D on the HCFC1 protein. We detected the HCFC1 in cell lines with overexpression and knockdown of FOXM1D by karyoplasmic isolation. YY1 is predicted to be a transcription factor of PD-1, ChIP and Luciferase experiments to detect the binding sites to the PD-1 promoter. JKT co-culture tests with renal cancer cells in supernatant cytokine levels, observe the killer T cells. Finally, we proceed animal testing.
Results
The FD level in PBMC of renal cancer patients was significantly lower than that of normal people. The change of FOXM1D in CD3+T cells was the same as PBMC. The transcription level of PD-1 and the level of PD-1 on the surface of Jurkat-FOXM1D in cells overexpressing FOXM1D was significantly down-regulated. HCFC1 was found to function as a cotranscription factor. In immune cells, FOXM1D inhibits the entry of HCFC1 into the nucleus by interacting with the N-terminal of HCFC1, weakens the transcriptional activation of HCFC1 to YY1, and then inhibits the transcriptional regulation of PD-1 molecules. After co-culture with T cells, the cytokine in supernatant of 786O and 769P cells was changed. And the animal experiment was in progress.
Conclusions
HCFC1, as a co-transcription factor, can enhance its transcriptional function by interacting with YY1, and further regulate the transcription of immune checkpoint molecules PD-1. FOXM1D inhibits the nuclear entry of HCFC1 by interacting with the N-terminus of HCFC1, attenuates the transcriptional activation of YY1 by HCFC1, and then inhibits the transcription of various immune checkpoint molecules such as PD-1.
Legal entity responsible for the study
Fudan University Shanghai Cancer Center.
Funding
Has not received any funding.
Disclosure
All authors have declared no conflicts of interest.
Resources from the same session
79P - A prospective, single-arm, phase II study to evaluate the efficacy and safety of Tislelizumab plus chemotherapy in resectable NSCLC
Presenter: Daqiang Sun
Session: Poster Display
80P - Efficacy and Safety of Tislelizumab Combined with Anlotinib and 2-cycles Chemotherapy as First-line Treatment for Advanced NSCLC(TISAL-FE-01)
Presenter: jun Tang
Session: Poster Display
81P - Real-World Experience with Docetaxel Regimens in Metastatic Non-Squamous (mNSq) Non-Small Cell Lung Cancer (NSCLC) Patients Previously Treated with Platinum-Based Chemotherapy (PCT) and an Immune Checkpoint Inhibitor (ICI) in the United States (US)
Presenter: Marisa Bittoni
Session: Poster Display
82P - The Role of Circadian Rhythms in NSCLC Immunotherapy Efficacy: A Focus on First Dose Timing
Presenter: Martin Igor Gomez-Randulfe Rodriguez
Session: Poster Display
84P - Adebrelimab plus chemotherapy (chemo) as first-line treatment for extensive-stage small-cell lung cancer (ES-SCLC): 3-year update of the phase 3 CAPSTONE-1 study
Presenter: Ying Cheng
Session: Poster Display
85P - Phase II trial of tislelizumab plus sitravatinib as maintenance therapy in extensive-stage small-cell lung cancer (ES-SCLC)
Presenter: Yun Fan
Session: Poster Display
86P - Durvalumab plus Olaparib as maintenance therapy in extensive-stage small-cell lung cancer (TRIDENT): updated efficacy and safety analysis
Presenter: Yan Huang
Session: Poster Display
88P - Adverse events (AEs) as potential predictive factors of activity in patients with advanced hepatocellular carcinoma (HCC) treated with atezolizumab plus bevacizumab (AB)
Presenter: MARA PERSANO
Session: Poster Display