Abstract 56P
Background
FOXM1D functions through interactions with proteins. We found that FOXM1D decreased in peripheral blood immune cells of renal cancer patients. It is speculated that FOXM1D is likely to regulate the expression level of immune checkpoint in immune cells through the way of interprotein interaction, and regulating the transcription of PD-1.
Methods
We detected the FD level in PBMC and CD3-positive T cells in clinical samples. PD-1 expression was detected. We performed mass spectrometry and found that HCFC1 function as a cotranscription factor. We examined the effect of FOXM1D on the HCFC1 protein. We detected the HCFC1 in cell lines with overexpression and knockdown of FOXM1D by karyoplasmic isolation. YY1 is predicted to be a transcription factor of PD-1, ChIP and Luciferase experiments to detect the binding sites to the PD-1 promoter. JKT co-culture tests with renal cancer cells in supernatant cytokine levels, observe the killer T cells. Finally, we proceed animal testing.
Results
The FD level in PBMC of renal cancer patients was significantly lower than that of normal people. The change of FOXM1D in CD3+T cells was the same as PBMC. The transcription level of PD-1 and the level of PD-1 on the surface of Jurkat-FOXM1D in cells overexpressing FOXM1D was significantly down-regulated. HCFC1 was found to function as a cotranscription factor. In immune cells, FOXM1D inhibits the entry of HCFC1 into the nucleus by interacting with the N-terminal of HCFC1, weakens the transcriptional activation of HCFC1 to YY1, and then inhibits the transcriptional regulation of PD-1 molecules. After co-culture with T cells, the cytokine in supernatant of 786O and 769P cells was changed. And the animal experiment was in progress.
Conclusions
HCFC1, as a co-transcription factor, can enhance its transcriptional function by interacting with YY1, and further regulate the transcription of immune checkpoint molecules PD-1. FOXM1D inhibits the nuclear entry of HCFC1 by interacting with the N-terminus of HCFC1, attenuates the transcriptional activation of YY1 by HCFC1, and then inhibits the transcription of various immune checkpoint molecules such as PD-1.
Legal entity responsible for the study
Fudan University Shanghai Cancer Center.
Funding
Has not received any funding.
Disclosure
All authors have declared no conflicts of interest.
Resources from the same session
35P - Peripheral immunotype classification for monitoring Soft Tissue Sarcoma patients
Presenter: Jani Sofia Almeida
Session: Poster Display
36P - Expression of germinal center B cell- and Th17 cell-related transcripts are prognostic of soft-tissue sarcoma patient outcomes
Presenter: Giulia Petroni
Session: Poster Display
38P - Machine learning-based pathomics model to predict the infiltration of Treg and prognosis in IDH-wt GBM
Presenter: Shaoli Peng
Session: Poster Display
40P - The role of low avidity tumour-specific CD8+ T cells in immunotherapeutic response to anti-PD-1
Presenter: Doreen Lau
Session: Poster Display
41P - Contrasting drivers of response to immunotherapy across solid tumour types: results from analysis of >2500 cases
Presenter: Danwen Qian
Session: Poster Display
42P - TCCIA: A Comprehensive Resource for Exploring CircRNA in Cancer Immunotherapy
Presenter: Jian-Guo Zhou
Session: Poster Display
43P - Immune and tumor cells expression of VISTA in a panel of cancer indications: A strategy to inform selection of patients treated with anti-VISTA
Presenter: Pierre Launay
Session: Poster Display
44P - Exploratory Analysis of Peripheral Pharmacodynamic (PD) Biomarkers After Sitravatinib (Sitra) and Tislelizumab (TIS) in Advanced Solid Tumors: SAFFRON-103
Presenter: Yi-Long Wu
Session: Poster Display
45P - Protein biomarkers associated with organ-specific immune-related toxicity and response to management identified by proteome analysis of extracellular vesicles from plasma
Presenter: Anders Kverneland
Session: Poster Display