Abstract 56P
Background
FOXM1D functions through interactions with proteins. We found that FOXM1D decreased in peripheral blood immune cells of renal cancer patients. It is speculated that FOXM1D is likely to regulate the expression level of immune checkpoint in immune cells through the way of interprotein interaction, and regulating the transcription of PD-1.
Methods
We detected the FD level in PBMC and CD3-positive T cells in clinical samples. PD-1 expression was detected. We performed mass spectrometry and found that HCFC1 function as a cotranscription factor. We examined the effect of FOXM1D on the HCFC1 protein. We detected the HCFC1 in cell lines with overexpression and knockdown of FOXM1D by karyoplasmic isolation. YY1 is predicted to be a transcription factor of PD-1, ChIP and Luciferase experiments to detect the binding sites to the PD-1 promoter. JKT co-culture tests with renal cancer cells in supernatant cytokine levels, observe the killer T cells. Finally, we proceed animal testing.
Results
The FD level in PBMC of renal cancer patients was significantly lower than that of normal people. The change of FOXM1D in CD3+T cells was the same as PBMC. The transcription level of PD-1 and the level of PD-1 on the surface of Jurkat-FOXM1D in cells overexpressing FOXM1D was significantly down-regulated. HCFC1 was found to function as a cotranscription factor. In immune cells, FOXM1D inhibits the entry of HCFC1 into the nucleus by interacting with the N-terminal of HCFC1, weakens the transcriptional activation of HCFC1 to YY1, and then inhibits the transcriptional regulation of PD-1 molecules. After co-culture with T cells, the cytokine in supernatant of 786O and 769P cells was changed. And the animal experiment was in progress.
Conclusions
HCFC1, as a co-transcription factor, can enhance its transcriptional function by interacting with YY1, and further regulate the transcription of immune checkpoint molecules PD-1. FOXM1D inhibits the nuclear entry of HCFC1 by interacting with the N-terminus of HCFC1, attenuates the transcriptional activation of YY1 by HCFC1, and then inhibits the transcription of various immune checkpoint molecules such as PD-1.
Legal entity responsible for the study
Fudan University Shanghai Cancer Center.
Funding
Has not received any funding.
Disclosure
All authors have declared no conflicts of interest.
Resources from the same session
26P - Liquid biopsy as promising source of plasma extracellular vesicle biomarkers of response to Cabozantinib (CABO) plus Durvalumab (DURVA) in advanced urothelial carcinoma (UC) or non-UC variant histologies (VH) patients (the Phase 2 ARCADIA trial)
Presenter: Veronica Huber
Session: Poster Display
27P - Peripheral biomarker analysis in patients with advanced urothelial carcinoma (UC) after platinum chemotherapy treated with Cabozantinib (CABO) plus Durvalumab (DURVA): preliminary analysis from the Phase 2 ARCADIA trial.
Presenter: Francesco Sgambelluri
Session: Poster Display
28P - 3-year follow-up analysis of disease-free survival in CheckMate 274 by PD-L1 expression using tumor cell and combined positive scoring algorithms
Presenter: Frank Stenner-Liewen
Session: Poster Display
30P - CD4+ T cells within the tumor microenvironment are an independent predictor of recurrence, but do not improve the performance of a predictive model in oral squamous cell carcinoma
Presenter: Sangeeta Bisheshar
Session: Poster Display
31P - Characterization of pre-exhausted / exhausted state of CD8+ T cells in HRAS mutant head and neck carcinomas (HNSCCs). Implications for response to immune checkpoint blockade (ICB).
Presenter: Ioannis Kotsantis
Session: Poster Display
32P - Tumor-agnostic plasma assay for circulating tumor DNA predicts outcome in recurrent and/or metastatic squamous cell carcinoma of the head and neck treated with a PD-1 inhibitor
Presenter: Natasha Honoré
Session: Poster Display
34P - Heterogeneous response to Immune Checkpoint Inhibitors in metastatic melanoma patients - assessment of lesion-level response with 18F-FDG PET/CT
Presenter: Katja Strasek
Session: Poster Display