Abstract 55P
Background
In recent years, immunotherapy has attracted much attention in the treatment of kidney cancer. Immune checkpoints, especially PD-L1, play an important role in the treatment of kidney cancer. Therefore, the treatment of immune-infiltration and immunosuppression through immune checkpoints has become an important direction in treating renal cancer.
Methods
Several high DPP9 expression and low DPP9 expression tumor tissues were selected for single-cell sequencing. Results told us that DPP9 regulates T-cell infiltrating and transcription of PD-L1. We used co-IP assay to discover the interaction between DPP9 and SHMT2-BRISC. Then we established the overexpression/knockout DPP9 renal cell lines to detect the upstream signal pathway of PD-L1, co-cultured with PBMC cells to observe the influence of immune escape. Meanwhile, we used organoids to confirm the above experiments. Finally, we used DPP9 inhibitor and PD-L1 monoclonal antibody in animal experiments.
Results
Single-cell sequencing showed that T-cell exhaustion signal was significantly up-regulated in the group with high DPP9 expression. IHC staining of DPP9, PD-L1, CD3, PD-1 in kidney cancer section was verified. Overexpression/knocked out of DPP9 in kidney cancer cells such as 786-O, 769P, caki-1 showed that DPP9 could regulate the transcription and translation of PD-L1. Then co-IP showed that DPP9 interacted with SHMT2, BRE, FAM175B proteins in the BRISC complex. The binding level of DPP9 and SHMT2-BRISC complex in the presence or absence of IFN-γ was detected, and dynamic binding was sought to determine whether more FAM175B and SHMT2 were involved in the formation of complex in the presence of DPP9, thus regulating the transcription of PD-L1 in the condition of IFN-γ. PD-L1 monoclonal antibody can inhibit the immune escape of renal cancer induced by DPP9, and the effect is better when combined with DPP9 inhibitors.
Conclusions
DPP9 can up-regulate the expression of PD-L1 in renal cancer cells through dynamically adjusting the stability of the BRISC complex via SHMT2. We provide the clinical principle and mechanism of DPP9 inhibitor combined with PD-L1 monoclonal antibody, and further determine the patient population suitable for immunotherapy.
Legal entity responsible for the study
The authors.
Funding
Has not received any funding.
Disclosure
All authors have declared no conflicts of interest.
Resources from the same session
137P - First-in-human results from a Phase I dose-escalation study of VSV-GP (BI 1831169) in patients with advanced solid tumors
Presenter: Stephane Champiat
Session: Poster Display
138P - Generation of frameshift mutated TGF_R2-specific T cells in healthy subjects following administration with cancer vaccine candidate FMPV-1/GM-CSF
Presenter: Else Inderberg
Session: Poster Display
139P - Safety and clinical activity of a novel anti-CCR8 antibody (LM-108) as a single agent or in combination with pembrolizumab in patients with advanced solid tumors: Results of phase 1 study
Presenter: Alexander Starodub
Session: Poster Display
140P - Eliciting mAbs targeting MHC-bound peptides with a novel antibody discovery platform
Presenter: Elli Sandberg
Session: Poster Display
141P - An IgE antibody targeting the melanoma-associated Chondroitin Sulfate Proteoglycan 4
Presenter: Lais Cristina Palhares
Session: Poster Display
142P - Identifying novel immunotherapy targets using machine learning and ex vivo validation
Presenter: Marcellus Augustine
Session: Poster Display
143P - Advancing Cancer Immunotherapy via HLA-G Pathway Modulation with UCB4594
Presenter: Ann WHITE
Session: Poster Display
144P - Discovery of CBO421, a first-in-class Drug Fc-Conjugate (DFC), targeting CD73 in Cancer
Presenter: Simon Döhrmann
Session: Poster Display
145P - An Engineered Ligand-Trap Biologic Targeting the CD47 Signaling Pathway for Cancer Treatment with Superb Efficacy and Safety Profiles
Presenter: ZONG SEAN JUO
Session: Poster Display
146P - A Novel Allosteric Oral Immunotherapy Small Molecule Modulates Adenosine 2A Receptor Signaling and Restores Anti-Tumor Immune Responses
Presenter: David Pejoski
Session: Poster Display