Abstract 55P
Background
In recent years, immunotherapy has attracted much attention in the treatment of kidney cancer. Immune checkpoints, especially PD-L1, play an important role in the treatment of kidney cancer. Therefore, the treatment of immune-infiltration and immunosuppression through immune checkpoints has become an important direction in treating renal cancer.
Methods
Several high DPP9 expression and low DPP9 expression tumor tissues were selected for single-cell sequencing. Results told us that DPP9 regulates T-cell infiltrating and transcription of PD-L1. We used co-IP assay to discover the interaction between DPP9 and SHMT2-BRISC. Then we established the overexpression/knockout DPP9 renal cell lines to detect the upstream signal pathway of PD-L1, co-cultured with PBMC cells to observe the influence of immune escape. Meanwhile, we used organoids to confirm the above experiments. Finally, we used DPP9 inhibitor and PD-L1 monoclonal antibody in animal experiments.
Results
Single-cell sequencing showed that T-cell exhaustion signal was significantly up-regulated in the group with high DPP9 expression. IHC staining of DPP9, PD-L1, CD3, PD-1 in kidney cancer section was verified. Overexpression/knocked out of DPP9 in kidney cancer cells such as 786-O, 769P, caki-1 showed that DPP9 could regulate the transcription and translation of PD-L1. Then co-IP showed that DPP9 interacted with SHMT2, BRE, FAM175B proteins in the BRISC complex. The binding level of DPP9 and SHMT2-BRISC complex in the presence or absence of IFN-γ was detected, and dynamic binding was sought to determine whether more FAM175B and SHMT2 were involved in the formation of complex in the presence of DPP9, thus regulating the transcription of PD-L1 in the condition of IFN-γ. PD-L1 monoclonal antibody can inhibit the immune escape of renal cancer induced by DPP9, and the effect is better when combined with DPP9 inhibitors.
Conclusions
DPP9 can up-regulate the expression of PD-L1 in renal cancer cells through dynamically adjusting the stability of the BRISC complex via SHMT2. We provide the clinical principle and mechanism of DPP9 inhibitor combined with PD-L1 monoclonal antibody, and further determine the patient population suitable for immunotherapy.
Legal entity responsible for the study
The authors.
Funding
Has not received any funding.
Disclosure
All authors have declared no conflicts of interest.
Resources from the same session
170P - Targeting myeloid cells in non-small cell lung cancer and hepatocellular carcinoma: a window-of-opportunity trial of nivolumab with BMS-813160 (CCR2/5i) or BMS-986253 (anti-IL8)
Presenter: Nicholas Venturini
Session: Poster Display
171P - Immune landscape and CLEVER-1 expression in hepatoblastoma
Presenter: Ville Väyrynen
Session: Poster Display
172P - PLCE1 stabilizes ENO1 to enhance glycolysis in esophageal squamous cell carcinoma (ESCC) and induces an immune-suppressive tumor microenvironment
Presenter: Ju Yang
Session: Poster Display
173P - Depleting resident peritoneal macrophages is an effective treatment for peritoneal metastasized colorectal cancer
Presenter: Job Saris
Session: Poster Display
174P - Targeting SPHK1 in macrophages suppresses liver metastasis of colorectal cancer and decouples anti-tumor immunity from immunotherapy toxicity
Presenter: Yizhi Zhan
Session: Poster Display
175P - MicroRNA-548c: An Immune-Activator microRNA at the Tumor Microenvironment and Immune Milieu of Breast Cancer
Presenter: Alyaa Dawoud
Session: Poster Display
176P - Multiplex-immunoflourescence spatial patterns to predict triple-negative breast cancer molecular subtypes in the IMMUcan study
Presenter: Andrea Joaquin Garcia
Session: Poster Display
177P - The Immune-microenvironment Confers Chemoresistance in Breast cancer through activation of VEGFR2/STAT3/BIRC5 signaling
Presenter: Bhawna Deswal
Session: Poster Display
178P - Dynamics of breast cancer T cell repertoire during neoadjuvant chemotherapy / immunotherapy.
Presenter: Charlotte Birchall
Session: Poster Display
179P - Integrating multiplex immunofluorescence with gene expression data in the IMMUcan HER2-positive breast cancer cohort
Presenter: Mattia Rediti
Session: Poster Display