Abstract 145P
Background
Macrophages exert their functions mainly through SIRPa receptor, which interacts with CD47 on cellular targets. As many cancer cells overexpress CD47 to evade immune surveillance, blocking SIRPa-CD47 interaction represents a promising approach to control tumor progression. The clinical progress of anti-CD47 antibodies were hindered by either side effects or lacking appreciable efficacy. To overcome this dilemma, we engineered a SIRPa-fusion protein that exhibits superior efficacy against multiple tumor types while maintaining good safety profiles.
Methods
Using structure-guided protein engineering, we selected a SIRPa mutant that exhibited marked phagocytic abilities against tumors while maintaining good safety features on normal cells. To assess the efficacy of this molecule, it was tested in multiple xenograft mouse models alongside competing biologics currently in clinical trials. We also performed quantitative RNA transcriptional analysis to evaluate the changes in gene expression inside tumor and in the tumor microenvironment.
Results
Comparing to other clinical candidates, HCB101 triggered strong phagocytic reactions against tumor cells but not red blood cells. We have analyzed 14 human tumor xenograft models, HCB101 consistently showed excellent efficacy against heme and solid tumors, with tumor growth inhibition index ranging from 60-100% at the dose of 0.5-10mg/kg over placebo. We also observed an increase in M1/M2 macrophage ratio after the treatment with HCB101, which correlated with the observed anti-tumor efficacy. Quantitative RNA transcriptional analysis indicated that HCB101 triggered drastic changes in gene expression comparing to other competing molecules. This suggested a unique MOA underlying HCB101’s superior efficacy. There was no apparent adverse reaction observed during the toxicology studies, indicating a good safety profile.
Conclusions
Comparing to relevant clinical candidates, HCB101 exhibits superior efficacy in 14 different CDX models of hemotological and solid tumors while maintaining good safety profiles. It is a highly effective biologic with robust efficacy, both as monotherapy and in combination. Clinical trial of HCB101 is now in progress.
Clinical trial identification
NCT05892718.
Legal entity responsible for the study
HanchorBio, Inc.
Funding
HanchorBio, Inc.
Disclosure
All authors have declared no conflicts of interest.
Resources from the same session
14P - Integrated modelling of T cell repertoires to identify clonotype signatures of ICI response
Presenter: Juan Luis Melero
Session: Poster Display
16P - Exosomal PD-L1 and lactate predict clinical outcomes of PD-1 blockade combined with chemotherapy in advanced-stage gastric and gastroesophageal junction adenocarcinoma
Presenter: Yongshun Chen
Session: Poster Display
17P - Spatial Characteristics Associated with the Chemo and Immuno-treatment Response of Gastric Cancer Revealed by Multi-omics Analysis
Presenter: Gang Che
Session: Poster Display
18P - Association of DNA methylation profiles with pathologic complete response in early triple negative breast cancer patients receiving neoadjuvant chemoimmunotherapy
Presenter: Angelika Starzer
Session: Poster Display
19P - The prognostic value of soluble CD73 in advanced triple-negative breast cancer: an exploratory analysis of the SYNERGY trial
Presenter: Denis Zoë
Session: Poster Display
21P - Mass cytometry reveals a population of exhausted CD8+ T cells associated with durvalumab/tremelimumab/vinorelbine efficacy in advanced cervical cancer (iMOVIE).
Presenter: Alexandre Bertucci
Session: Poster Display
22P - Predictive value of Tertiary Lymphoid Structure in patients with mismatch repair deficient advanced/ recurrent endometrial cancer treated with Dostarlimab.
Presenter: Maria Kfoury
Session: Poster Display
23P - Circulating immune cells and activity of immune checkpoint inhibitors in metastatic renal cell carcinoma
Presenter: Ronan Flippot
Session: Poster Display
24P - Chromosome 3p-related gene alterations (GA) as biomarkers for immunocombinations in metastatic renal cell carcinoma (mRCC): a hypothesis-generating analysis
Presenter: Matteo Rosellini
Session: Poster Display