Abstract 145P
Background
Macrophages exert their functions mainly through SIRPa receptor, which interacts with CD47 on cellular targets. As many cancer cells overexpress CD47 to evade immune surveillance, blocking SIRPa-CD47 interaction represents a promising approach to control tumor progression. The clinical progress of anti-CD47 antibodies were hindered by either side effects or lacking appreciable efficacy. To overcome this dilemma, we engineered a SIRPa-fusion protein that exhibits superior efficacy against multiple tumor types while maintaining good safety profiles.
Methods
Using structure-guided protein engineering, we selected a SIRPa mutant that exhibited marked phagocytic abilities against tumors while maintaining good safety features on normal cells. To assess the efficacy of this molecule, it was tested in multiple xenograft mouse models alongside competing biologics currently in clinical trials. We also performed quantitative RNA transcriptional analysis to evaluate the changes in gene expression inside tumor and in the tumor microenvironment.
Results
Comparing to other clinical candidates, HCB101 triggered strong phagocytic reactions against tumor cells but not red blood cells. We have analyzed 14 human tumor xenograft models, HCB101 consistently showed excellent efficacy against heme and solid tumors, with tumor growth inhibition index ranging from 60-100% at the dose of 0.5-10mg/kg over placebo. We also observed an increase in M1/M2 macrophage ratio after the treatment with HCB101, which correlated with the observed anti-tumor efficacy. Quantitative RNA transcriptional analysis indicated that HCB101 triggered drastic changes in gene expression comparing to other competing molecules. This suggested a unique MOA underlying HCB101’s superior efficacy. There was no apparent adverse reaction observed during the toxicology studies, indicating a good safety profile.
Conclusions
Comparing to relevant clinical candidates, HCB101 exhibits superior efficacy in 14 different CDX models of hemotological and solid tumors while maintaining good safety profiles. It is a highly effective biologic with robust efficacy, both as monotherapy and in combination. Clinical trial of HCB101 is now in progress.
Clinical trial identification
NCT05892718.
Legal entity responsible for the study
HanchorBio, Inc.
Funding
HanchorBio, Inc.
Disclosure
All authors have declared no conflicts of interest.
Resources from the same session
35P - Peripheral immunotype classification for monitoring Soft Tissue Sarcoma patients
Presenter: Jani Sofia Almeida
Session: Poster Display
36P - Expression of germinal center B cell- and Th17 cell-related transcripts are prognostic of soft-tissue sarcoma patient outcomes
Presenter: Giulia Petroni
Session: Poster Display
38P - Machine learning-based pathomics model to predict the infiltration of Treg and prognosis in IDH-wt GBM
Presenter: Shaoli Peng
Session: Poster Display
40P - The role of low avidity tumour-specific CD8+ T cells in immunotherapeutic response to anti-PD-1
Presenter: Doreen Lau
Session: Poster Display
41P - Contrasting drivers of response to immunotherapy across solid tumour types: results from analysis of >2500 cases
Presenter: Danwen Qian
Session: Poster Display
42P - TCCIA: A Comprehensive Resource for Exploring CircRNA in Cancer Immunotherapy
Presenter: Jian-Guo Zhou
Session: Poster Display
43P - Immune and tumor cells expression of VISTA in a panel of cancer indications: A strategy to inform selection of patients treated with anti-VISTA
Presenter: Pierre Launay
Session: Poster Display
44P - Exploratory Analysis of Peripheral Pharmacodynamic (PD) Biomarkers After Sitravatinib (Sitra) and Tislelizumab (TIS) in Advanced Solid Tumors: SAFFRON-103
Presenter: Yi-Long Wu
Session: Poster Display
45P - Protein biomarkers associated with organ-specific immune-related toxicity and response to management identified by proteome analysis of extracellular vesicles from plasma
Presenter: Anders Kverneland
Session: Poster Display