Abstract 77P
Background
Cell-free DNA (cfDNA) has been widely used for patient screening, treatment response and disease progression monitoring. Due to the low tumor fraction of cfDNA samples, assays with small target panel (covering a few hundred genes or less) and high sequencing depth were commonly used. There is a lack of large panels, especially genome-wide whole exome sequencing data based on cfDNA. Here we present cfDNA whole exome sequencing mutational profiles from over 2000 plasma and urine samples in various cancer indications.
Methods
The PredicineWES+ assay, featuring enhanced 20,000x coverage in 600 cancer-related genes (0.25% LoD) and 2,500x in the rest of the exome (1% LoD), was utilized for cfDNA mutation profiling. Requiring as little as 5 ng of cfDNA from 1-5 mL of plasma or 20-40 mL of urine, the assay was performed at various clinical points. Using the Predicine DeepSEA bioinformatics pipeline, it detects SNVs, small insertions and deletions, gene-level CNVs, and targeted rearrangements/fusions, and also reports on MSI, TMB, and tumor fraction. Optionally, it includes low-pass whole-genome sequencing to provide additional genome-wide CNB and tumor fraction data without requiring extra sample volume.
Results
We present data from a representative cohort of over 2,000 blood and urine samples processed at Predicine lab in Hayward, California. These samples span seven major cancer types: breast, lung, prostate, bladder, pancreatic, colon, and head and neck. We compare the mutational and CNV profiles from each liquid biopsy cancer cohort to variants found in solid tumor tissues, using Predicine's in-house data and large public datasets, including Project GENIE (71,817 patients) and other study programs such as TCGA and cBioPortal (38,619 patients).
Conclusions
PredicineWES+ is a comprehensive assay for detecting cancer variants in blood and urine. It detects mutations across 600 cancer-related genes at a 20,000x sequencing depth, with cfDNA mutation profiles that align closely with public tissue datasets. PredicineWES+ is utilized for baseline profiling in the PredicineBEACON MRD assay and demonstrates a high correlation in TMB scores with PredicineATLAS. Available in the US and China, it supports clinical patient testing and global trials.
Clinical trial identification
Editorial acknowledgement
Legal entity responsible for the study
The authors.
Funding
Has not received any funding.
Disclosure
P. Du: Financial Interests, Personal, Full or part-time Employment: Predicine. All other authors have declared no conflicts of interest.
Resources from the same session
21P - DNAJC1 inhibit the ferroptosis of glioma cells through stabilizing GPX4 by competing with TRIM21
Presenter: Min Chao
Session: Poster session 07
Resources:
Abstract
22P - Pre-clinical development of CVGBM: A therapeutic mRNA-based multiepitope vaccine for glioblastoma
Presenter: Ronja Mülfarth
Session: Poster session 07
23P - Germline testing in a selected cohort of non-small cell lung cancer (NSCLC) patients: Final results from the INHERITY LC study
Presenter: Maria Zurera Berjaga
Session: Poster session 07
24P - Assessment of an AI algorithm to classify germline variants in the ATM cancer predisposition gene
Presenter: Nooshin Bayat
Session: Poster session 07
25P - NGS-based identification of novel hereditary breast/ovarian cancer genes in patients with clinical features of genetic predisposition
Presenter: Ekaterina Kuligina
Session: Poster session 07
26P - Multi-feature cell free DNA analysis and ensemble machine learning for early detection of cancer
Presenter: Seongmun Jeong
Session: Poster session 07
27P - Molecular insights on cutaneous melanoma hyperpigmentation and therapy resistance
Presenter: Elena Andreucci
Session: Poster session 07
28P - Targeting YAP1 as a biomarker of resistance and therapeutic strategy in melanoma immunotherapy
Presenter: Szonja Kovács
Session: Poster session 07
29P - Considering intra-patient response variability in clinical trials: Implications for treatment efficacy and survival
Presenter: Caryn Geady
Session: Poster session 07
Resources:
Abstract
30P - CDK4/6 inhibitors dephosphorylate RNF26 to stabilize TSC1 and increase the sensitivity of ccRCC to mTOR inhibitors
Presenter: Yang Zheng
Session: Poster session 07