Abstract 21P
Background
Glioma is a malignant brain tumor, with high mortality and high morbidity, accounting for 80-85% of malignant tumors in the central nervous system. Infinite proliferation of tumor cells, as the aftermath of imbalanced status in programmed cell death, is a critical stage in tumorigenesis. During the past several years, there has been increased interest in ferroptosis, which contributes to tumor progression.
Methods
U251 cells, U87 cells, and primary glioma cells were used in this study. The ferroptosis of cells were evaluated by cell viability, MDA, PI stain, and GPX. Truncated plasmids of DNAJC1, GPX4, and TRIM21 were conducted to perform the co-IP assays, which explore the regulatory mechanisms between DNAJC1, GPX4, and TRIM21. And we further designed a polypeptide, GAP-14, which could break the DNAJC1 protection of GPX4 from degradation by TRIM21. Orthotopic implantation models were further used to study the therapeutic effect of GAP-14.
Results
We first found that DNAJC1 was a susceptibility gene of glioma in the CGGA database, which was overexpressed in glioma tissues and accompanied by poor prognosis. Then, we discovered that DNAJC1 could protect glioma development by averting tumor cell ferroptosis, and DNAJC1 averted the glioma cells from ferroptosis via GPX4. CHX and MG132 were used to perform the assays that displayed DNAJC1 repressing proteasomal degradation of GPX4, and functioned as an inhibitor of GPX4 ubiquitination by competing with TRIM21. Moreover, under the regulatory mechanism between DNAJC1, GPX4, and TRIM21, GAP-14 was synthesized which specifically targeted on DNAJC1 regulating GPX4 stability. Orthotopic models showed that GAP-14, combined with TMZ, could prolong the survival time of the mice, and decrease the proliferation of glioma in vivo.
Conclusions
In the study, we investigated if DNAJC1 was a susceptibility gene of glioma, averting ferroptosis of tumor cells. It has been considered that the process with DNAJC1 protecting ferroptosis, is a vulnerable target in glioma treatment. Here, we have explored the gatekeeper mechanism of DNAJC1 regulating tumor cell ferroptosis, and designed a short polypeptide, GAP-14, which specifically resists the DNAJC1 protected ferroptosis, with curbing glioma exacerbation.
Clinical trial identification
Editorial acknowledgement
Legal entity responsible for the study
Tangdu Hospital.
Funding
1. Grant no. 81772661, The National Natural Science Foundation of China, Recipient: LW. 2. Grant no. 2020JZ-30, Natural Science Basic Research Program of Shaanxi Province, Recipient: LW. 3. Grant no. 2021ZTXM007, National Natural Science Foundation of China Booster Project of Tangdu Hospital, Recipient: MC. 4. Grant no. 2021SHRC012, Social Talent Funding Scheme of Tangdu Hospital, Recipient: MC.
Disclosure
All authors have declared no conflicts of interest.
Resources from the same session
1781P - Multi-omics of soft tissue sarcomas with complex karyotypes: Investigating genomic and transcriptomic differences between cell lines of the same subtype
Presenter: Miriam Arrulo
Session: Poster session 07
1782P - Assessing the role of denosumab in managing aneurysmal bone cysts: A scoping review
Presenter: Vinesh Sandhu
Session: Poster session 07
1783P - Genetic predisposition in adult sarcoma patients: Beyond TP53
Presenter: Olivia Rohr
Session: Poster session 07
1784TiP - Pasireotide as maintenance treatment in SSTR2/3/5-expressing synovial sarcoma and desmoplastic small round cell tumor: The PAMSARC study
Presenter: Richard Schlenk
Session: Poster session 07
1785TiP - PERELI, a phase II, open label, multicenter study of pemigatinib and retifanlimab in advanced dedifferentiated liposarcoma
Presenter: Helena Nyström
Session: Poster session 07
1787P - Intracranial response in patients (pts) with baseline (BL) brain metastases (BM) and extensive-stage (ES) small cell lung cancer (SCLC) treated with ifinatamab deruxtecan (I-DXd) in the IDeate-Lung01 study
Presenter: Melissa Johnson
Session: Poster session 07
1790P - Phase II data of lurbinectedin (LUR) and irinotecan (IRI) in relapsed small cell lung cancer (SCLC) patients (pts) with chemotherapy-free interval (CTFI)>30 days (d)
Presenter: Jon Zugazagoitia
Session: Poster session 07