Abstract 1192P
Background
Detection and risk stratification of pulmonary nodules during a Lung Cancer Screening (LCS) examination is time-consuming, prone to false positives and missed detections. Leveraging Artificial Intelligence (AI) in such tasks has outperformed human readers in detection, and current risk models (Brock, MAYO) in risk prediction. Here, we present the results of an independent verification study to explore the software’s detection and characterization performance on an external dataset.
Methods
The model was trained on 10,872 patients (543 cancers) independently annotated from the NLST (National Lung Screening Trial) and LIDC (Lung Image Database Consortium) cohorts. 264 patients meeting the USPSTF criteria (age 50-80, Smoker) were collected from the EU (26%) and the USA (74%) for independent verification. The dataset comprised 88 cancer patients and 176 benign, with average size for all nodules of 6.2 ± 3.2 mm, and 17.5 ± 5.8 mm for cancerous nodules. To generate reference standards, two radiologists independently annotated each patient, with a third acting as an adjudicator to arrive at a consensus for location and nodule diagnosis (histopathology or ≥12 month stability).
Results
The verification AUC for risk prediction was 0.95, with a sensitivity of 93.2% and specificity of 87.5% at the Youden index. Cancer detection sensitivity was 91.2%, with an average of 0.44 false positive detections per scan. Performances were consistent across multiple technical and clinical parameters, including CT manufacturer, kernel hardness, kernel slice thickness, patient sex, data source, and nodule solidity (see the table). Table: 1192P
Subclass type | Subclass | AUC |
Manufacturer | SIEMENS Healthineers | 0.96 |
GE Healthcare | 0.94 | |
Canon/Toshiba | 0.95 | |
Kernel | Sharp | 0.98 |
Average | 0.94 | |
Soft | 0.93 | |
Slice thickness (mm) | 0.5-0.75 | 0.96 |
1-1.25 | 0.94 | |
1.25-1.5 | 0.96 | |
Sex | Female | 0.95 |
Male | 0.95 | |
Source | EU | 0.90 |
USA | 0.97 | |
Nodule solidity | Solid | 0.96 |
Part-solid | 0.93 |
Conclusions
This study demonstrates that the AI software is robust to external data with similar performances versus the NLST test set (AUC: 0.97) and among subclasses. More accurate screening driven by AI promises to be beneficial to LCS, reducing unneeded exams, costs, and radiologist time.
Clinical trial identification
Editorial acknowledgement
Legal entity responsible for the study
Median Technologies.
Funding
Median Technologies.
Disclosure
All authors have declared no conflicts of interest.
Resources from the same session
845TiP - CNS lymphoma imaging and molecular biomarkers study: CLIMB
Presenter: Panagiotis Ntellas
Session: Poster session 09
1173P - Combining mass spectrometry with quantitative continuous scoring to unlock the full quantitative potential of immunohistochemistry
Presenter: Ana Hidalgo-Sastre
Session: Poster session 09
1174P - FLAMINGO: Accurate cancer detection from ultra-low-pass whole genome sequencing of cell-free DNA
Presenter: Daan Vessies
Session: Poster session 09
1175P - Universal circulating tumor DNA quantification using deep learning
Presenter: Anders Skanderup
Session: Poster session 09
Resources:
Abstract
1176P - Potential utility of ctDNA to detect false positive PET/CT in the evaluation of lymphoma response
Presenter: Alejandro martín-muñoz
Session: Poster session 09
1177P - FRESH: The Gustave Roussy program to facilitate access to liquid biopsy for precision oncology in France
Presenter: Etienne Rouleau
Session: Poster session 09
1178P - EGFR evaluation in non-small cell lung cancer: An artificial intelligence approach to pre-molecular analysis
Presenter: Chad Vanderbilt
Session: Poster session 09
1179P - WomEC: a novel diagnostic test for the detection of endometrial cancer in uterine fluids
Presenter: Antonio Gil-Moreno
Session: Poster session 09
1180P - An integrated metabolomics-based platform for early-stage detection of multiple cancers
Presenter: imliwati longkumer
Session: Poster session 09