Abstract 1192P
Background
Detection and risk stratification of pulmonary nodules during a Lung Cancer Screening (LCS) examination is time-consuming, prone to false positives and missed detections. Leveraging Artificial Intelligence (AI) in such tasks has outperformed human readers in detection, and current risk models (Brock, MAYO) in risk prediction. Here, we present the results of an independent verification study to explore the software’s detection and characterization performance on an external dataset.
Methods
The model was trained on 10,872 patients (543 cancers) independently annotated from the NLST (National Lung Screening Trial) and LIDC (Lung Image Database Consortium) cohorts. 264 patients meeting the USPSTF criteria (age 50-80, Smoker) were collected from the EU (26%) and the USA (74%) for independent verification. The dataset comprised 88 cancer patients and 176 benign, with average size for all nodules of 6.2 ± 3.2 mm, and 17.5 ± 5.8 mm for cancerous nodules. To generate reference standards, two radiologists independently annotated each patient, with a third acting as an adjudicator to arrive at a consensus for location and nodule diagnosis (histopathology or ≥12 month stability).
Results
The verification AUC for risk prediction was 0.95, with a sensitivity of 93.2% and specificity of 87.5% at the Youden index. Cancer detection sensitivity was 91.2%, with an average of 0.44 false positive detections per scan. Performances were consistent across multiple technical and clinical parameters, including CT manufacturer, kernel hardness, kernel slice thickness, patient sex, data source, and nodule solidity (see the table). Table: 1192P
Subclass type | Subclass | AUC |
Manufacturer | SIEMENS Healthineers | 0.96 |
GE Healthcare | 0.94 | |
Canon/Toshiba | 0.95 | |
Kernel | Sharp | 0.98 |
Average | 0.94 | |
Soft | 0.93 | |
Slice thickness (mm) | 0.5-0.75 | 0.96 |
1-1.25 | 0.94 | |
1.25-1.5 | 0.96 | |
Sex | Female | 0.95 |
Male | 0.95 | |
Source | EU | 0.90 |
USA | 0.97 | |
Nodule solidity | Solid | 0.96 |
Part-solid | 0.93 |
Conclusions
This study demonstrates that the AI software is robust to external data with similar performances versus the NLST test set (AUC: 0.97) and among subclasses. More accurate screening driven by AI promises to be beneficial to LCS, reducing unneeded exams, costs, and radiologist time.
Clinical trial identification
Editorial acknowledgement
Legal entity responsible for the study
Median Technologies.
Funding
Median Technologies.
Disclosure
All authors have declared no conflicts of interest.
Resources from the same session
224P - Lung cancer scRNA-seq analyses reveal potential mechanisms causing different efficacy of target therapy and immunotherapy between EGFR 19del and L858R lung adenocarcinoma
Presenter: Hao Wang
Session: Poster session 09
225P - Nivolumab for cancer of unknown primary (CUP): Clinical efficacy and biomarker analysis from NivoCUP2 expanded access program (WJOG14620M)
Presenter: Junko Tanizaki
Session: Poster session 09
226TiP - CLEAR-Me: Interception trial to detect and clear molecular residual disease in patients with high-risk melanoma
Presenter: Erick Saldanha
Session: Poster session 09
227TiP - A phase II, open label, randomized, non-comparative cohorts study of adjuvant atezolizumab or atezolizumab plus tiragolumab in solid tumors with resectable disease with intermediate-high risk of recurrence and high tumor mutational burden (TMB-H) or microsatellite instability (MSI-H)
Presenter: Guillermo Antonio De Velasco Oria
Session: Poster session 09
228TiP - FINPROVE: The Finnish national study to facilitate patient access to targeted anti-cancer drugs
Presenter: Mika Mustonen
Session: Poster session 09
229TiP - A phase II trial of a neural network-based treatment decision support tool in patients (pts) with refractory solid organ malignancies
Presenter: Robert Walsh
Session: Poster session 09
230TiP - Exploring mechanisms of action and resistance in innovate cancer therapies: The UNLOCK program
Presenter: Beatriz Alonso de Castro
Session: Poster session 09
694P - Sequential high-dose-chemotherapy with 4 cycles paclitaxel, ifosfamide, carboplatin, etoposide (P-ICE) in relapsed/refractory male germ cell cancer: Final results with 15.8 years follow-up
Presenter: Hans Joachim Schmoll
Session: Poster session 09
695P - Assessment of the utility of CT scans in the long-term follow-up of metastatic non-seminomatous germ cell tumours (mNSGCT): The Late CT study
Presenter: Deep Chakrabarti
Session: Poster session 09
696P - Post chemotherapy retroperitoneal lymph node dissection (PC-RPLND) for metastatic pure seminoma
Presenter: David Pfister
Session: Poster session 09