Abstract 97P
Background
DNA methylation sequencing holds promise for early cancer detection. However, conventional bisulfite conversion-based methods such as Accel-NGS Methyl-Seq are inadequate for cfDNA (cell-free DNA) methylation analysis due to cumbersome operation and exacerbating cfDNA degradation. We developed a novel methylation sequencing method GENIE-seq, aimed at achieving accurate epigenetic profiling of cfDNA.
Methods
We compared the analytical performance of GENIE-seq, a high-fidelity method based on gentle enzymatic conversion with minimal DNA damage and convenient “one-tube” workflow, with a state-of-the-art method Accel-NGS Methyl-Seq. The library complexity, assay sensitivity, and methylation accuracy of both methods were analyzed using gDNA from HCT116 and GM12878 cell lines, and cfDNA from healthy donors. Accuracy of methylation level (β value) quantification was assessed using human gDNA reference materials with certain methylation levels. The robustness of GENIE-seq and Accel-NGS Methyl-Seq was evaluated with varying input amounts of cfDNA, and the impact of potential interferents was assessed.
Results
In comparing GENIE-seq libraries to Accel-NGS Methyl-Seq, it was found that GENIE-seq exhibited about 80% higher unique molecules regardless of sequencing depth. Furthermore, GENIE-seq demonstrated greater power in mutation detection ability compared to Accel-NGS Methyl-Seq. Additionally, GENIE-seq displayed superior accuracy in methylation level quantification, with an R2 value of 0.98 for GENIE-seq compared to 0.91 for Accel-NGS Methyl-Seq. The correlated methylation values of GENIE-seq across a range of cfDNA input amounts (0.5ng to 100ng) were consistently above 0.96, which was significantly higher than that of Accel-NGS Methyl-Seq (0.80). Importantly, GENIE-seq demonstrated excellent robustness with no potential interferents impacting its performance.
Conclusions
We developed GENIE-seq, which introduces gentle enzymatic conversion of DNA and compact “one-tube” workflow to improve the DNA template usage and reduce potential biases. This sensitive and robust sequencing method holds significant potential for applications in methylation-based liquid biopsies.
Clinical trial identification
Editorial acknowledgement
Legal entity responsible for the study
Shanghai Weihe Medical Laboratory Co. Ltd.
Funding
Shanghai Weihe Medical Laboratory Co. Ltd.
Disclosure
All authors have declared no conflicts of interest.
Resources from the same session
1802P - Cost-effectiveness study of atezolizumab (ATZ) vs. durvalumab (DUR) in elderly extensive disease small cell lung cancer (ED-SCLC) patients (pts): Real-world data (RWD) on first-line chemotherapy combined with immune-checkpoint inhibitors (Chemo-ICIs)
Presenter: Ken Yamamoto
Session: Poster session 07
1803P - Analysis of samples from the SCLC REACTION trial: Discovery of biomarkers to optimize treatment
Presenter: Pernelle Lavaud
Session: Poster session 07
1805P - PKD1L1 mutations in small cell lung cancer: A genomic signature for poor prognosis and drug susceptibility
Presenter: Ning Tang
Session: Poster session 07
Resources:
Abstract
1806P - Clinical characteristics and management of small cell lung cancer long survivors
Presenter: Elisa Gobbini
Session: Poster session 07
1807P - Spatial analyses revealed MMP7 as the biomarker of tumor boundary correlated with immune resistance in small cell lung cancer
Presenter: Le Tang
Session: Poster session 07
1809P - Validation of the lung inmune prognostic (LIPI) index in first-line immunotherapy treatment of small cell lung carcinoma
Presenter: Patricia Cruz Castellanos
Session: Poster session 07
1810P - MYC expression defines distinct transcriptomic landscape and affects response to DNA-damaging therapies in SCLC
Presenter: Caterina de Rosa
Session: Poster session 07