Abstract 97P
Background
DNA methylation sequencing holds promise for early cancer detection. However, conventional bisulfite conversion-based methods such as Accel-NGS Methyl-Seq are inadequate for cfDNA (cell-free DNA) methylation analysis due to cumbersome operation and exacerbating cfDNA degradation. We developed a novel methylation sequencing method GENIE-seq, aimed at achieving accurate epigenetic profiling of cfDNA.
Methods
We compared the analytical performance of GENIE-seq, a high-fidelity method based on gentle enzymatic conversion with minimal DNA damage and convenient “one-tube” workflow, with a state-of-the-art method Accel-NGS Methyl-Seq. The library complexity, assay sensitivity, and methylation accuracy of both methods were analyzed using gDNA from HCT116 and GM12878 cell lines, and cfDNA from healthy donors. Accuracy of methylation level (β value) quantification was assessed using human gDNA reference materials with certain methylation levels. The robustness of GENIE-seq and Accel-NGS Methyl-Seq was evaluated with varying input amounts of cfDNA, and the impact of potential interferents was assessed.
Results
In comparing GENIE-seq libraries to Accel-NGS Methyl-Seq, it was found that GENIE-seq exhibited about 80% higher unique molecules regardless of sequencing depth. Furthermore, GENIE-seq demonstrated greater power in mutation detection ability compared to Accel-NGS Methyl-Seq. Additionally, GENIE-seq displayed superior accuracy in methylation level quantification, with an R2 value of 0.98 for GENIE-seq compared to 0.91 for Accel-NGS Methyl-Seq. The correlated methylation values of GENIE-seq across a range of cfDNA input amounts (0.5ng to 100ng) were consistently above 0.96, which was significantly higher than that of Accel-NGS Methyl-Seq (0.80). Importantly, GENIE-seq demonstrated excellent robustness with no potential interferents impacting its performance.
Conclusions
We developed GENIE-seq, which introduces gentle enzymatic conversion of DNA and compact “one-tube” workflow to improve the DNA template usage and reduce potential biases. This sensitive and robust sequencing method holds significant potential for applications in methylation-based liquid biopsies.
Clinical trial identification
Editorial acknowledgement
Legal entity responsible for the study
Shanghai Weihe Medical Laboratory Co. Ltd.
Funding
Shanghai Weihe Medical Laboratory Co. Ltd.
Disclosure
All authors have declared no conflicts of interest.
Resources from the same session
1781P - Multi-omics of soft tissue sarcomas with complex karyotypes: Investigating genomic and transcriptomic differences between cell lines of the same subtype
Presenter: Miriam Arrulo
Session: Poster session 07
1782P - Assessing the role of denosumab in managing aneurysmal bone cysts: A scoping review
Presenter: Vinesh Sandhu
Session: Poster session 07
1783P - Genetic predisposition in adult sarcoma patients: Beyond TP53
Presenter: Olivia Rohr
Session: Poster session 07
1784TiP - Pasireotide as maintenance treatment in SSTR2/3/5-expressing synovial sarcoma and desmoplastic small round cell tumor: The PAMSARC study
Presenter: Richard Schlenk
Session: Poster session 07
1785TiP - PERELI, a phase II, open label, multicenter study of pemigatinib and retifanlimab in advanced dedifferentiated liposarcoma
Presenter: Helena Nyström
Session: Poster session 07
1787P - Intracranial response in patients (pts) with baseline (BL) brain metastases (BM) and extensive-stage (ES) small cell lung cancer (SCLC) treated with ifinatamab deruxtecan (I-DXd) in the IDeate-Lung01 study
Presenter: Melissa Johnson
Session: Poster session 07
1790P - Phase II data of lurbinectedin (LUR) and irinotecan (IRI) in relapsed small cell lung cancer (SCLC) patients (pts) with chemotherapy-free interval (CTFI)>30 days (d)
Presenter: Jon Zugazagoitia
Session: Poster session 07