Abstract 1191P
Background
Currently, the investigative set for lung cancer primarily comprises of radiological imaging modalities, chest radiographs (X-rays) and CT scans. An increasing number of evidence underscores the pivotal role of screening programs, particularly among high-risk populations, in the early detection of lung cancer. This assertion is substantiated by the findings of three landmark clinical trials, the NLST, the NELSON trial and the UK UKLS. Notably, the employment of low-dose computed tomography (LDCT) has demonstrated remarkable efficacy, exhibiting heightened sensitivity in the detection of early-stage lung neoplasms. Nevertheless, there has not been a development of a robust, structured screening protocol.In this arena, artificial intelligence (AI) emerges as a promising and potent adjunctive tool. AI systems have shown the capacity to augment the precision of early detection of lung malignancies.
Methods
Our research culminated in the development of a Bayesian Neural Network model tailored for lung cancer detection, achieving an accuracy of 99%, thus signaling its potential as a leading-edge diagnostic tool. Our meticulous incorporation of the Hamiltonian Monte Carlo technique ensures precision in exploring the model’s parameter space, with strong credibility and efficacy.
Results
Moving beyond traditional methodologies, our findings not only set new benchmarks in AI-empowered medical diagnostics but also highlight the path for future work aiming at early and accurate cancer detection. Our work distinctly demonstrates, for the first time that the Bayesian Neural Networks (BNNs) can offer a compelling advantage to medical aspects. By providing not only precise predictions but also a clear measure of the associated uncertainty, the BNNs can play a transformative role in lung cancer diagnosis. The superior performance of the BNN model in our experiments, particularly its 99% accuracy accentuates its potential as a diagnostic tool.
Conclusions
In this study, the DNN showcased its robustness with an impressive 93% accuracy rate in predicting lung cancer levels. The architecture’s multi-layered complexity enables it to capture intricate patterns in the data, contributing to its high performance.
Clinical trial identification
Editorial acknowledgement
Legal entity responsible for the study
The authors.
Funding
Has not received any funding.
Disclosure
All authors have declared no conflicts of interest.
Resources from the same session
1192P - Optimizing lung cancer screening: Independent verification of an AI/ML computer-aided detection and characterization software as medical device
Presenter: Sylvain Bodard
Session: Poster session 09
1194P - Development of a novel artificial intelligence (AI) algorithm to detect pulmonary nodules on chest radiography
Presenter: Mitsunori Higuchi
Session: Poster session 09
1195P - Whole-body magnetic resonance imaging (WB-MRI) screening in Li Fraumeni syndrome for early cancer diagnosis: The SIGNIFIED project
Presenter: Elena Cojocaru
Session: Poster session 09
1196P - Organoid growth-based oncological sensitivity test (OncoSensi) for predicting adjuvant therapy outcomes in ovarian cancer patients
Presenter: Dong Woo Lee
Session: Poster session 09
1197P - Ex vivo basket study reports patient-specific sensitivity to carboplatin versus cisplatin in lung, ovarian and bladder cancer
Presenter: Debbie Robbrecht
Session: Poster session 09
1198P - Analytical validation of an NGS panel-based ecDNA detection device for use as a clinical trial assay for the POTENTIATE clinical study of the novel CHK1 inhibitor, BBI-355
Presenter: Pontis Julien
Session: Poster session 09