Abstract 1191P
Background
Currently, the investigative set for lung cancer primarily comprises of radiological imaging modalities, chest radiographs (X-rays) and CT scans. An increasing number of evidence underscores the pivotal role of screening programs, particularly among high-risk populations, in the early detection of lung cancer. This assertion is substantiated by the findings of three landmark clinical trials, the NLST, the NELSON trial and the UK UKLS. Notably, the employment of low-dose computed tomography (LDCT) has demonstrated remarkable efficacy, exhibiting heightened sensitivity in the detection of early-stage lung neoplasms. Nevertheless, there has not been a development of a robust, structured screening protocol.In this arena, artificial intelligence (AI) emerges as a promising and potent adjunctive tool. AI systems have shown the capacity to augment the precision of early detection of lung malignancies.
Methods
Our research culminated in the development of a Bayesian Neural Network model tailored for lung cancer detection, achieving an accuracy of 99%, thus signaling its potential as a leading-edge diagnostic tool. Our meticulous incorporation of the Hamiltonian Monte Carlo technique ensures precision in exploring the model’s parameter space, with strong credibility and efficacy.
Results
Moving beyond traditional methodologies, our findings not only set new benchmarks in AI-empowered medical diagnostics but also highlight the path for future work aiming at early and accurate cancer detection. Our work distinctly demonstrates, for the first time that the Bayesian Neural Networks (BNNs) can offer a compelling advantage to medical aspects. By providing not only precise predictions but also a clear measure of the associated uncertainty, the BNNs can play a transformative role in lung cancer diagnosis. The superior performance of the BNN model in our experiments, particularly its 99% accuracy accentuates its potential as a diagnostic tool.
Conclusions
In this study, the DNN showcased its robustness with an impressive 93% accuracy rate in predicting lung cancer levels. The architecture’s multi-layered complexity enables it to capture intricate patterns in the data, contributing to its high performance.
Clinical trial identification
Editorial acknowledgement
Legal entity responsible for the study
The authors.
Funding
Has not received any funding.
Disclosure
All authors have declared no conflicts of interest.
Resources from the same session
202P - eIF4E inhibition exhibits anti-tumor activity and re-sensitizes acquired resistant KRAS G12C NSCLC to KRAS inhibitors
Presenter: Andrew Truong
Session: Poster session 09
203P - An innovative evidence-based laboratory medicine (EBLM) test to help doctors in multi-cancer early detection (MCED)
Presenter: Jose D Santotoribio
Session: Poster session 09
204P - Assessing biomarker testing awareness among patients and caregivers in NSCLC through an interdisciplinary global survey
Presenter: Rodrigo Paredes
Session: Poster session 09
205P - Detection and diagnosis of lung cancer by electronic nose analysis of exhaled breath: A multi-center prospective observational study
Presenter: Alessandra Buma
Session: Poster session 09
206P - Unveiling the link: How metabolic syndrome drives endometrial cancer progression
Presenter: Lirong Zhai
Session: Poster session 09
Resources:
Abstract
207P - Associations of diabetic background retinopathy and ER+ breast cancer risk: A Mendelian randomization study
Presenter: Shu Wang
Session: Poster session 09
208P - Role of plasma exosomes in crosstalk between immune system and hereditary ovarian cancer: Opportunity or challenge?
Presenter: Daniele Fanale
Session: Poster session 09
209P - A novel method for early evaluation of drug-specific predictive biomarker
Presenter: Gal Dinstag
Session: Poster session 09
210P - Therapeutic implications of phosphoproteomics in molecular cancer diagnostics
Presenter: Annika Schneider
Session: Poster session 09
211P - GynePDX: A new platform of preclinical models for endometrial and ovarian cancers
Presenter: Melek Denizli
Session: Poster session 09