Abstract 1191P
Background
Currently, the investigative set for lung cancer primarily comprises of radiological imaging modalities, chest radiographs (X-rays) and CT scans. An increasing number of evidence underscores the pivotal role of screening programs, particularly among high-risk populations, in the early detection of lung cancer. This assertion is substantiated by the findings of three landmark clinical trials, the NLST, the NELSON trial and the UK UKLS. Notably, the employment of low-dose computed tomography (LDCT) has demonstrated remarkable efficacy, exhibiting heightened sensitivity in the detection of early-stage lung neoplasms. Nevertheless, there has not been a development of a robust, structured screening protocol.In this arena, artificial intelligence (AI) emerges as a promising and potent adjunctive tool. AI systems have shown the capacity to augment the precision of early detection of lung malignancies.
Methods
Our research culminated in the development of a Bayesian Neural Network model tailored for lung cancer detection, achieving an accuracy of 99%, thus signaling its potential as a leading-edge diagnostic tool. Our meticulous incorporation of the Hamiltonian Monte Carlo technique ensures precision in exploring the model’s parameter space, with strong credibility and efficacy.
Results
Moving beyond traditional methodologies, our findings not only set new benchmarks in AI-empowered medical diagnostics but also highlight the path for future work aiming at early and accurate cancer detection. Our work distinctly demonstrates, for the first time that the Bayesian Neural Networks (BNNs) can offer a compelling advantage to medical aspects. By providing not only precise predictions but also a clear measure of the associated uncertainty, the BNNs can play a transformative role in lung cancer diagnosis. The superior performance of the BNN model in our experiments, particularly its 99% accuracy accentuates its potential as a diagnostic tool.
Conclusions
In this study, the DNN showcased its robustness with an impressive 93% accuracy rate in predicting lung cancer levels. The architecture’s multi-layered complexity enables it to capture intricate patterns in the data, contributing to its high performance.
Clinical trial identification
Editorial acknowledgement
Legal entity responsible for the study
The authors.
Funding
Has not received any funding.
Disclosure
All authors have declared no conflicts of interest.
Resources from the same session
1181P - Diagnostic target product profiles for cancer: A demand signaling tool to stimulate innovation in early cancer diagnosis
Presenter: Sonja Marjanovic
Session: Poster session 09
1182P - Determination of tumor PSMA expression in prostate cancer from blood using a novel epigenomic liquid biopsy platform
Presenter: Praful Ravi
Session: Poster session 09
1183P - Impact of multicancer early detection (MCED) test on participant-reported outcomes (PRO) and behavioral intentions by cancer risk
Presenter: Christina Dilaveri
Session: Poster session 09
1184P - Early real-world experience with positive multi-cancer early detection (MCED) test cases and negative initial diagnostic work-up
Presenter: Candace Westgate
Session: Poster session 09
1185P - Clinical applications of a novel blood-based fragmentomics assay for lung cancer detection
Presenter: Marc Siegel
Session: Poster session 09
1186P - SmartCS-LPLLM: Enhancing early cancer detection through ctDNA methylation analysis leveraging large language models
Presenter: Li Chao
Session: Poster session 09
1187P - Molecular diagnosis of lung cancer via ctDNA and ctRNA detection on bronchoscopic fluid specimens from 31 patients: A retrospective analysis
Presenter: Vincent Fallet
Session: Poster session 09
1188P - Modeled economic and clinical impact of a multi-cancer early detection (MCED) test in a population with hereditary cancer syndromes
Presenter: Sana Raoof
Session: Poster session 09
1189P - Cancer genome interpreter: A data-driven tool for tumor mutation interpretation
Presenter: Santiago Demajo
Session: Poster session 09
1190P - Circulating tumor DNA from the tumor-draining pulmonary vein as a biomarker in resected non-small cell lung cancer
Presenter: Raphael Werner
Session: Poster session 09