Abstract 486P
Background
Glioblastoma (GBM) is a vastly lethal cancer with a high unmet clinical need and poor prognosis. Several targeting therapies are under clinical stage development but passing of the blood-brain barrier (BBB) remains one of the biggest hurdles. Here, we report the development and efficacy by systemic delivery of RBD8088, an innovative oligonucleotide drug capable of traversing the BBB and targeting glioblastoma specifically.
Methods
An oligonucleotide compound specific for targeting of glioma tumor cells in vitro was discovered, further developed and optimized. Its targeting effect was verified in vivo in subcutaneous (SC) and orthotopic cell line-derived xenograft (CDX) mouse models using human glioma cell lines U118MG and U87. The oligonucleotide compound was further optimized and derivatized to form RBD8088. RBD8088´s anti-tumor activity was evaluated after repeated dosing in SC and orthotopic CDX mouse models. The stability in serum was quantified by LC-MS and safety assessed in rodents.
Results
RBD8088 demonstrates a specific tumor targeting effect when administered systemically in SC xenograft and in brain orthotopic CDX mouse models. In addition, a dose dependent and long-lasting anti-tumor efficacy was shown. In SC xenograft model, tumor growth was significantly halted, resulted in 162.3 mm3 for RBD8088-treated vs 600.2 mm3 for control drug at study end (p-value <0.05, n=7/group). In brain orthotopic glioma tumor mouse models, tumor size was measured by luciferase radiance resulting in 1.83x106 for RBD8088 vs 158.3x106 p/sec/cm2/sr for a control drug at day 27 (p-value<0.05, n=6/group). RBD8088 is stable in mouse serum in vitro for up to 24 h. Safety studies in mice and rats show that the RBD8088 is well tolerated.
Conclusions
RBD8088 penetrates BBB and express a therapeutic effect in a targeted manner in mouse models of GBM. RBD8088 is currently undergoing further preclinical validation and development aiming for CTA/IND application in the near future.
Clinical trial identification
Editorial acknowledgement
Legal entity responsible for the study
Suzhou Ribo Life Science, Co. Ltd.
Funding
Suzhou Ribo Life Science, Co. Ltd.
Disclosure
All authors have declared no conflicts of interest.
Resources from the same session
547P - Artificial Intelligence-powered analysis of the tumor immune microenvironment in primary and metastatic colorectal cancer
Presenter: Elio Adib
Session: Poster session 16
548P - Simplified immune score based on CD8+ T-cells at the invasive margin provides comparable prognostic value to immune scores in non-metastatic colorectal cancer
Presenter: Durgesh Wankhede
Session: Poster session 16
549P - Combined morphometric immune signatures define the prognosis of patients with resectable colorectal liver metastases
Presenter: Markus Moehler
Session: Poster session 16
550P - The impact of mismatch repair status on accuracy of clinical staging in upfront resected stage II/III rectal cancer in the Netherlands
Presenter: Renee Lunenberg
Session: Poster session 16
551P - Efficacy prediction of chemoradiotherapy plus anti-PD-1/PD-L1 treatment by magnetic resonance imaging in MSS locally advanced rectal cancer
Presenter: Wentao Tang
Session: Poster session 16
552P - Baseline imaging biomarkers to predict outcomes in locally advanced colon cancer (LACC): Data from the FOxTROT international randomised-controlled trial
Presenter: James Platt
Session: Poster session 16
553P - Association of ctDNA-based MRD detection and MRD clearance with short-term overall survival in patients with resectable colorectal cancer: Updated analysis of CIRCULATE-Japan GALAXY
Presenter: JUN NAGATA
Session: Poster session 16
555P - Association between copy number aberration and ctDNA MRD in colorectal cancer: CIRCULATE-Japan GALAXY
Presenter: TOMOYA HARIMA
Session: Poster session 16