Abstract 36P
Background
Trastuzumab has demonstrated significant efficacy in treating HER2 positive breast cancer, yet approximately 50% of patients develop resistance during or after treatment. While previous studies have proposed various potential explanations, metabolic changes during the development of resistance remain poorly understood. In this study, we identified abnormal metabolism of branched-chain amino acids in trastuzumab primary resistant HER2 positive breast cancer, suggesting a promising target for overcoming resistance.
Methods
HER2 positive breast cancer cell SKBR3 (sensitive) and JITM1 (primary resistant) were utilized for transcriptomics, metabolomics and epigenomics analysis. Plasma samples of HER2 positive breast cancer patients with different trastuzumab responses were obtained for metabolomics analysis. ChIP-seq was employed to compare the binding regions of H3K4me3 and H3K27me3. DNA methylation levels and differentially methylated regions were assessed using WGBS-seq. CRISPRi, employing dCas9-DNMT3A and dCas9-EZH2, was utilized to modulate specific DNA methylation and histone modifications.
Results
Circulating branched-chain amino acids (BCAA), including valine, leucine and isoleucine, were increased in HER2 positive breast cancer patients with primary trastuzumab resistance. Joint analysis of metabolomic and transcriptomic data verified that JIMT1 featured upregulated valine, leucine and isoleucine biosynthesis and downregulated degradation processes. BCAT1 expression was found increased in JIMT1, which might result from both downregulated H3K27me3 and DNA methylation at its promoter regions. The utilization of dCas9-EZH2 and dCas9-DNMT3A could increase H3K27me3 and 5-mC at its promoter regions and suppress BCAT1 expression. The inhibition of BCAT1 or deprivation of extracellular BCAA could synergize with trastuzumab to prevent tumor growth.
Conclusions
HER2 positive breast cancer with primary trastuzumab resistance features abnormal BCAA metabolism. Targeting BCAT1 or restraining extracellular BCAA supply might provide novel targets for overcoming trastuzumab resistance.
Clinical trial identification
Editorial acknowledgement
Legal entity responsible for the study
The authors.
Funding
National Natural Science Foundation of China (81972484 and 82203488).
Disclosure
All authors have declared no conflicts of interest.
Resources from the same session
1802P - Cost-effectiveness study of atezolizumab (ATZ) vs. durvalumab (DUR) in elderly extensive disease small cell lung cancer (ED-SCLC) patients (pts): Real-world data (RWD) on first-line chemotherapy combined with immune-checkpoint inhibitors (Chemo-ICIs)
Presenter: Ken Yamamoto
Session: Poster session 07
1803P - Analysis of samples from the SCLC REACTION trial: Discovery of biomarkers to optimize treatment
Presenter: Pernelle Lavaud
Session: Poster session 07
1805P - PKD1L1 mutations in small cell lung cancer: A genomic signature for poor prognosis and drug susceptibility
Presenter: Ning Tang
Session: Poster session 07
Resources:
Abstract
1806P - Clinical characteristics and management of small cell lung cancer long survivors
Presenter: Elisa Gobbini
Session: Poster session 07
1807P - Spatial analyses revealed MMP7 as the biomarker of tumor boundary correlated with immune resistance in small cell lung cancer
Presenter: Le Tang
Session: Poster session 07
1809P - Validation of the lung inmune prognostic (LIPI) index in first-line immunotherapy treatment of small cell lung carcinoma
Presenter: Patricia Cruz Castellanos
Session: Poster session 07
1810P - MYC expression defines distinct transcriptomic landscape and affects response to DNA-damaging therapies in SCLC
Presenter: Caterina de Rosa
Session: Poster session 07