Abstract 838P
Background
In the survival prognosis of patients with multiple myeloma, there are staging models based on Cox survival models. Current staging models do not include patients with missing data, although there are multiple investigations where the problem of missing information is very common. This situation causes results that do not represent the reality of the populations, generating biases in the true results of the research and excluding patients both in training and in the application of the model to new patients.
Methods
To solve this problem, a survival model based on Bayesian statistics was built that not only allowed us to impute the missing data of patients with multiple Myeloma using statistical methods but also allowed us to predict new patients with missing data. This model was built and tuned using data from multiple myeloma patients from a public database from a study conducted in Arkansas.
Results
The results of the Bayesian model allowed us to estimate the survival of patients with missing information. Additionally, when compared with the classic Cox models in patients with complete data, the performance metrics did not deteriorate (concordance index of 72% and 71% respectively) in patients with complete data. In addition, it allows for estimating survival and staging the risk of patients with multiple myeloma with missing data, maintaining the concordance rate at 71%.
Conclusions
A model that performs as well as Cox models in patients with complete data and maintains this performance in patients with missing data is achieved. It also allows the prediction of new patients who are diagnosed with multiple myeloma without the restriction that their complete clinical or genetic data is needed.
Clinical trial identification
Editorial acknowledgement
Legal entity responsible for the study
The authors.
Funding
Has not received any funding.
Disclosure
All authors have declared no conflicts of interest.
Resources from the same session
1173P - Combining mass spectrometry with quantitative continuous scoring to unlock the full quantitative potential of immunohistochemistry
Presenter: Ana Hidalgo-Sastre
Session: Poster session 09
1174P - FLAMINGO: Accurate cancer detection from ultra-low-pass whole genome sequencing of cell-free DNA
Presenter: Daan Vessies
Session: Poster session 09
1175P - Universal circulating tumor DNA quantification using deep learning
Presenter: Anders Skanderup
Session: Poster session 09
Resources:
Abstract
1176P - Potential utility of ctDNA to detect false positive PET/CT in the evaluation of lymphoma response
Presenter: Alejandro martín-muñoz
Session: Poster session 09
1177P - FRESH: The Gustave Roussy program to facilitate access to liquid biopsy for precision oncology in France
Presenter: Etienne Rouleau
Session: Poster session 09
1178P - EGFR evaluation in non-small cell lung cancer: An artificial intelligence approach to pre-molecular analysis
Presenter: Chad Vanderbilt
Session: Poster session 09
1179P - WomEC: a novel diagnostic test for the detection of endometrial cancer in uterine fluids
Presenter: Antonio Gil-Moreno
Session: Poster session 09
1180P - An integrated metabolomics-based platform for early-stage detection of multiple cancers
Presenter: imliwati longkumer
Session: Poster session 09
1181P - Diagnostic target product profiles for cancer: A demand signaling tool to stimulate innovation in early cancer diagnosis
Presenter: Sonja Marjanovic
Session: Poster session 09