Abstract 838P
Background
In the survival prognosis of patients with multiple myeloma, there are staging models based on Cox survival models. Current staging models do not include patients with missing data, although there are multiple investigations where the problem of missing information is very common. This situation causes results that do not represent the reality of the populations, generating biases in the true results of the research and excluding patients both in training and in the application of the model to new patients.
Methods
To solve this problem, a survival model based on Bayesian statistics was built that not only allowed us to impute the missing data of patients with multiple Myeloma using statistical methods but also allowed us to predict new patients with missing data. This model was built and tuned using data from multiple myeloma patients from a public database from a study conducted in Arkansas.
Results
The results of the Bayesian model allowed us to estimate the survival of patients with missing information. Additionally, when compared with the classic Cox models in patients with complete data, the performance metrics did not deteriorate (concordance index of 72% and 71% respectively) in patients with complete data. In addition, it allows for estimating survival and staging the risk of patients with multiple myeloma with missing data, maintaining the concordance rate at 71%.
Conclusions
A model that performs as well as Cox models in patients with complete data and maintains this performance in patients with missing data is achieved. It also allows the prediction of new patients who are diagnosed with multiple myeloma without the restriction that their complete clinical or genetic data is needed.
Clinical trial identification
Editorial acknowledgement
Legal entity responsible for the study
The authors.
Funding
Has not received any funding.
Disclosure
All authors have declared no conflicts of interest.
Resources from the same session
212P - BRGSF-HIS mice as a predictive tool for safety assessment of biologics
Presenter: Kader Thiam
Session: Poster session 09
213P - Constructing a high-definition patient-digital twin (PDT) in treatment-naïve women with advanced cancer
Presenter: Leonardo Garma
Session: Poster session 09
215P - Detection of MUTYH for the prognosis and chemotherapy responsiveness of patients with non-small cell lung cancer
Presenter: Chi Wai Wong
Session: Poster session 09
216P - β-catenin is a potential prognostic biomarker in uterine sarcoma
Presenter: Ying Cai
Session: Poster session 09
218P - Exploiting a unique glycosaminoglycan for novel pan-cancer therapies and diagnostics
Presenter: Mette Agerbæk
Session: Poster session 09
219P - The landscape and prognostic impact of germline HLA-A subtypes in patients with advanced solid cancers
Presenter: Kyrillus Shohdy
Session: Poster session 09
220P - The role of fucosyltransferase 1 (FUT1) in CRC as a putative prognostic and predictive biomarker
Presenter: Lorenz Pammer
Session: Poster session 09
221P - ANGPTL4's role in cancer: A meta analysis and bioinformatics exploration
Presenter: Osama Younis
Session: Poster session 09
222P - Artificial intelligence (AI) based prognostication from baseline computed tomography (CT) scans in a phase III advanced non-small cell lung cancer (aNSCLC) trial
Presenter: Omar Khan
Session: Poster session 09