Abstract 203P
Background
Tumor markers (TMs) are a heterogeneous group of molecules used in the diagnosis, prognosis, and follow-up of cancer patients. However, TMs present some drawbacks, like their low specificity, as their levels also increase in benign diseases, which can result in false positives (e.g. they are catabolized in the liver and excreted through the kidneys so, any pathology related with these organs could impact in their concentration, even above their upper reference limit). The objective of this study is to evaluate the efficacy of different algorithms that can detect most of benign diseases that can increase TMs levels together with an innovative MCED algorithm.
Methods
We studied a novel non-invasive EBLM test for MCED, developed to use 18 serum TMs and other analytes. Powered by public and proprietary machine learning (ML) algorithms, this diagnostic tool aims to accurately detect up to 42 solid tumors and 5 hematological malignancies. Additionally, it screens for up to 303 non-malignant diseases, many of which increase TMs’ concentration in the absence of neoplasia, as the Barcelona criteria of 1994 already suggested. This test comprises a computation of individual tests tailored to different diagnostic targets, some studies of which have been presented in ASCO 2022 (breast, colon) and ESMO 2024 (liver, lung, ovarian, prostate), from different clinical research studies conducted among the last 8 years. Besides, parallel and serial approximations were conducted to optimize overall sensitivity (Se) and specificity (Sp), respectively.
Results
For the 303 benign diseases screening, we achieved a final sample size (n) of 151,357 individuals and the results of Se, Sp, AUROC, PPV, and the NPV were 0.97, 0.95, 0.85, 0.97, and 0.96, respectively. For the MCED, we achieved an n of 192.090 individuals and the values of Se, Sp, AUROC, PPV, and NPV were 0.95, 0.73, 0.92, 0.77, and 0.93, respectively.
Conclusions
This data supports that integrating different laboratory analytes to identify diverse comorbidities helps to achieve higher sensitivity and specificity values to detect various cancer types using TMs. However, further research should be conducted to confirm these findings.
Clinical trial identification
Editorial acknowledgement
Legal entity responsible for the study
The authors.
Funding
Kience Inc.
Disclosure
S.J. Calleja: Financial Interests, Personal, Ownership Interest: Kience Inc.. A. Roca: Financial Interests, Personal, Membership or affiliation: Blueberry Diagnotics SL. All other authors have declared no conflicts of interest.
Resources from the same session
708P - The Empower Pathway: An audit of the first 150 patients. Enhanced personalised care of testicular cancer survivors
Presenter: Penny Champion
Session: Poster session 09
817P - A machine learning algorithm utilizing clinicopathologic parameters for extranodal natural killer/T cell lymphoma
Presenter: Shuo Li
Session: Poster session 09
Resources:
Abstract
818P - The association between hospital volume and overall survival in adult AML patients treated with intensive chemotherapy
Presenter: Z.L.Rana Kaplan
Session: Poster session 09
819P - Efficacy and safety of orelabrutinib plus R-CHOP-like regimens for treatment-naïve diffuse large B-cell lymphoma with double expression
Presenter: Wei Wan
Session: Poster session 09
820P - Second primary malignancies and disease transformation in symptomatic patients with Waldenstrom’s macroglobulinemia: Outcomes of a population-based analysis
Presenter: Vasiliki Spiliopoulou
Session: Poster session 09
821P - Circulating chromosomal alterations in lymphoid malignancies
Presenter: Rosalie Griffin
Session: Poster session 09
822P - Preliminary results from a phase Ib study of amulirafusp alfa (IMM0306) in combination with lenalidomide in patients with relapsed or refractory CD20-positive B-cell non-Hodgkin's lymphoma
Presenter: Lijuan Deng
Session: Poster session 09
823P - The bone marrow immune ecosystem shapes acquired resistance to daratumumab in plasma cell myeloma
Presenter: Yun Wang
Session: Poster session 09
824P - FLT3-ITD induces immune escape in AML via up-regulating CD47 expression and decreased phagpcytic ability of macrophages
Presenter: Shuzhao Chen
Session: Poster session 09
825P - Ultra-sensitive cfDNA analysis for minimally invasive measurable residual disease detection and profiling in multiple myeloma
Presenter: Natalia Buenache
Session: Poster session 09