Abstract 203P
Background
Tumor markers (TMs) are a heterogeneous group of molecules used in the diagnosis, prognosis, and follow-up of cancer patients. However, TMs present some drawbacks, like their low specificity, as their levels also increase in benign diseases, which can result in false positives (e.g. they are catabolized in the liver and excreted through the kidneys so, any pathology related with these organs could impact in their concentration, even above their upper reference limit). The objective of this study is to evaluate the efficacy of different algorithms that can detect most of benign diseases that can increase TMs levels together with an innovative MCED algorithm.
Methods
We studied a novel non-invasive EBLM test for MCED, developed to use 18 serum TMs and other analytes. Powered by public and proprietary machine learning (ML) algorithms, this diagnostic tool aims to accurately detect up to 42 solid tumors and 5 hematological malignancies. Additionally, it screens for up to 303 non-malignant diseases, many of which increase TMs’ concentration in the absence of neoplasia, as the Barcelona criteria of 1994 already suggested. This test comprises a computation of individual tests tailored to different diagnostic targets, some studies of which have been presented in ASCO 2022 (breast, colon) and ESMO 2024 (liver, lung, ovarian, prostate), from different clinical research studies conducted among the last 8 years. Besides, parallel and serial approximations were conducted to optimize overall sensitivity (Se) and specificity (Sp), respectively.
Results
For the 303 benign diseases screening, we achieved a final sample size (n) of 151,357 individuals and the results of Se, Sp, AUROC, PPV, and the NPV were 0.97, 0.95, 0.85, 0.97, and 0.96, respectively. For the MCED, we achieved an n of 192.090 individuals and the values of Se, Sp, AUROC, PPV, and NPV were 0.95, 0.73, 0.92, 0.77, and 0.93, respectively.
Conclusions
This data supports that integrating different laboratory analytes to identify diverse comorbidities helps to achieve higher sensitivity and specificity values to detect various cancer types using TMs. However, further research should be conducted to confirm these findings.
Clinical trial identification
Editorial acknowledgement
Legal entity responsible for the study
The authors.
Funding
Kience Inc.
Disclosure
S.J. Calleja: Financial Interests, Personal, Ownership Interest: Kience Inc.. A. Roca: Financial Interests, Personal, Membership or affiliation: Blueberry Diagnotics SL. All other authors have declared no conflicts of interest.
Resources from the same session
1173P - Combining mass spectrometry with quantitative continuous scoring to unlock the full quantitative potential of immunohistochemistry
Presenter: Ana Hidalgo-Sastre
Session: Poster session 09
1174P - FLAMINGO: Accurate cancer detection from ultra-low-pass whole genome sequencing of cell-free DNA
Presenter: Daan Vessies
Session: Poster session 09
1175P - Universal circulating tumor DNA quantification using deep learning
Presenter: Anders Skanderup
Session: Poster session 09
Resources:
Abstract
1176P - Potential utility of ctDNA to detect false positive PET/CT in the evaluation of lymphoma response
Presenter: Alejandro martín-muñoz
Session: Poster session 09
1177P - FRESH: The Gustave Roussy program to facilitate access to liquid biopsy for precision oncology in France
Presenter: Etienne Rouleau
Session: Poster session 09
1178P - EGFR evaluation in non-small cell lung cancer: An artificial intelligence approach to pre-molecular analysis
Presenter: Chad Vanderbilt
Session: Poster session 09
1179P - WomEC: a novel diagnostic test for the detection of endometrial cancer in uterine fluids
Presenter: Antonio Gil-Moreno
Session: Poster session 09
1180P - An integrated metabolomics-based platform for early-stage detection of multiple cancers
Presenter: imliwati longkumer
Session: Poster session 09
1181P - Diagnostic target product profiles for cancer: A demand signaling tool to stimulate innovation in early cancer diagnosis
Presenter: Sonja Marjanovic
Session: Poster session 09