Abstract 199P
Background
Immune checkpoint inhibitors (ICI) are used to manage patients with SCLC and NSCLC lung cancer. Yet, response rates are often low and identifying patients that will benefit from ICIs can be challenging. Accurate and accessible tools that predict ICI responses could enable a precision medicine approach that improves patient outcomes. This study aimed to use ML to predict response to ICI therapies in patients with lung cancer based on clinically available data.
Methods
334 eligible records were reprocessed using one hot encoding. 161 patients had complete datasets available. Differences in data distribution were handled using the Synthetic Minority Oversampling Technique. Six ML algorithms were trained, including Linear regression, Support Vector Classifier, XGBoost Classifier, Random Forest, Decision Tree and Gaussian Naïve Bayes Classifier. The algorithms used 80% of the training data, were tested on 20% of validation data and used the Grid Search Cross-Validation technique for hyperparameter optimization.
Results
Of the 161 patients, 9% had SCLC and 80% had NSCLC. Patients receiving Pembrolizumab, Nivolumab and Atezolizumab comprised 62%, 11% and 25% respectively. XGBoost Classifier predicted response with the most accuracy, 64%. The artificial intelligence (AI) algorithm predicted and stratified ICI response better than PD-L1 levels alone (Table). The model showed good performance status, female gender and adenocarcinoma sub-type predicted response to ICI. Conversely, M1, N2 staging, male gender, squamous cell carcinoma sub-type and receiving Atezolizumab were predictive of disease progression. Table: 199P
Response (R) % | Stable Disease (SD) % | Disease Progression (DP) % | AI-predicted validation cohort % | ||||
R | SD | DP | |||||
Total N=161 | 29 | 8 | 63 | 33 | 6 | 61 | |
PD-L1 levels | <1% N=23 | 13 | 9 | 78 | 33.3 | 0 | 66.6 |
1-50% N=19 | 42 | 0 | 58 | 66.6 | 0 | 33.3 | |
>50% N=33 | 33 | 11 | 56 | 50 | 14 | 36 |
Conclusions
Multiple novel ML models, developed using clinically available data, showed that ICI type, histopathology sub-type and TMN staging impact ICI response in lung cancer. Future studies will seek to include more SCLC cases and compare the prediction accuracy among the three ICIs.
Clinical trial identification
Editorial acknowledgement
Jane Webb for data access from electronic medical records Denny Wong for data cleaning and pre-processing.
Legal entity responsible for the study
The authors.
Funding
Has not received any funding.
Disclosure
V. Balaji: Financial Interests, Personal, Full or part-time Employment: Curenetics. V. Tailor: Financial Interests, Personal, Full or part-time Employment: CurenX. G. Powell: Financial Interests, Personal, Full or part-time Employment: Curenetics. R. Shah: Financial Interests, Personal, Advisory Role: Boehringer Ingelheim, AstraZeneca , Roche, Bristol Myers Squibb, MSD, Pfizer, Lilly, Novartis, Takeda, Bayer, BeiGene, Guardant Health, Sanofi, EQRx. O.M. Adeleke: Financial Interests, Personal, Stocks or ownership: Curenetics. All other authors have declared no conflicts of interest.
Resources from the same session
155P - Exploring the utility of serum anti-tNASP antibodies as a screening biomarker in prostate, pancreatic, and ovarian cancer
Presenter: Oleg Alekseev
Session: Poster session 01
156P - The association between fibrotic endotypes, determined by pre-treatment serum levels of collagen metabolites, and survival outcomes in patients with pancreatic cancer
Presenter: Rasmus Pedersen
Session: Poster session 01
157P - CLDN18 fusions rather than expression is a biomarker related to the efficacy of paclitaxel in patients with ovarian metastasis of gastric cancer
Presenter: Pengfei Yu
Session: Poster session 01
158P - In silico analysis of HER2 enriched subtype and a HER2 index based on transcriptomic data of breast cancer compared to gastric and uterine serous carcinomas
Presenter: Arturo Gonzalez-Vilanova
Session: Poster session 01
159P - Better performance of pan-claudin18 antibodies on claudin18.2 detection in gastric adenocarcinoma than claudin18.2 specific antibody
Presenter: Shujuan NI
Session: Poster session 01
161P - Biomarkers of neoadjuvant combinational therapy for locally advanced gastric or gastroesophageal junction adenocarcinoma
Presenter: Yue Wang
Session: Poster session 01
162P - MR imaging biomarkers profiles in patients with prostate cancer treated with androgen deprivation therapy
Presenter: Angel Luis Sanchez Iglesias
Session: Poster session 01
163P - Genomic alterations in circulating tumor DNA (ctDNA) and response to ABBV-400 treatment in patients with advanced solid tumors
Presenter: Jair Bar
Session: Poster session 01
164P - Early evaluation of effectiveness and cost-effectiveness of ctDNA-guided selection for adjuvant chemotherapy in stage II colon cancer
Presenter: Astrid Kramer
Session: Poster session 01