Abstract 199P
Background
Immune checkpoint inhibitors (ICI) are used to manage patients with SCLC and NSCLC lung cancer. Yet, response rates are often low and identifying patients that will benefit from ICIs can be challenging. Accurate and accessible tools that predict ICI responses could enable a precision medicine approach that improves patient outcomes. This study aimed to use ML to predict response to ICI therapies in patients with lung cancer based on clinically available data.
Methods
334 eligible records were reprocessed using one hot encoding. 161 patients had complete datasets available. Differences in data distribution were handled using the Synthetic Minority Oversampling Technique. Six ML algorithms were trained, including Linear regression, Support Vector Classifier, XGBoost Classifier, Random Forest, Decision Tree and Gaussian Naïve Bayes Classifier. The algorithms used 80% of the training data, were tested on 20% of validation data and used the Grid Search Cross-Validation technique for hyperparameter optimization.
Results
Of the 161 patients, 9% had SCLC and 80% had NSCLC. Patients receiving Pembrolizumab, Nivolumab and Atezolizumab comprised 62%, 11% and 25% respectively. XGBoost Classifier predicted response with the most accuracy, 64%. The artificial intelligence (AI) algorithm predicted and stratified ICI response better than PD-L1 levels alone (Table). The model showed good performance status, female gender and adenocarcinoma sub-type predicted response to ICI. Conversely, M1, N2 staging, male gender, squamous cell carcinoma sub-type and receiving Atezolizumab were predictive of disease progression. Table: 199P
Response (R) % | Stable Disease (SD) % | Disease Progression (DP) % | AI-predicted validation cohort % | ||||
R | SD | DP | |||||
Total N=161 | 29 | 8 | 63 | 33 | 6 | 61 | |
PD-L1 levels | <1% N=23 | 13 | 9 | 78 | 33.3 | 0 | 66.6 |
1-50% N=19 | 42 | 0 | 58 | 66.6 | 0 | 33.3 | |
>50% N=33 | 33 | 11 | 56 | 50 | 14 | 36 |
Conclusions
Multiple novel ML models, developed using clinically available data, showed that ICI type, histopathology sub-type and TMN staging impact ICI response in lung cancer. Future studies will seek to include more SCLC cases and compare the prediction accuracy among the three ICIs.
Clinical trial identification
Editorial acknowledgement
Jane Webb for data access from electronic medical records Denny Wong for data cleaning and pre-processing.
Legal entity responsible for the study
The authors.
Funding
Has not received any funding.
Disclosure
V. Balaji: Financial Interests, Personal, Full or part-time Employment: Curenetics. V. Tailor: Financial Interests, Personal, Full or part-time Employment: CurenX. G. Powell: Financial Interests, Personal, Full or part-time Employment: Curenetics. R. Shah: Financial Interests, Personal, Advisory Role: Boehringer Ingelheim, AstraZeneca , Roche, Bristol Myers Squibb, MSD, Pfizer, Lilly, Novartis, Takeda, Bayer, BeiGene, Guardant Health, Sanofi, EQRx. O.M. Adeleke: Financial Interests, Personal, Stocks or ownership: Curenetics. All other authors have declared no conflicts of interest.
Resources from the same session
207P - Palbociclib (P) in patients (pts) with solid tumors with CDK4 or CDK6 amplification (amp): Results from the Targeted Agent and Profiling Utilization Registry (TAPUR) study
Presenter: Maged Khalil
Session: Poster session 01
208P - Identification of BCOR mutation as a novel predictor of immunotherapy efficacy in gastrointestinal tumors
Presenter: Wuping Wang
Session: Poster session 01
209P - Molecular atlas of copy number variation(CNV) in lung cancer with brain metastases
Presenter: Xianfeng Zhang
Session: Poster session 01
210P - Lung tumour vascularity is a risk factor for survival in NSCLC patients undergoing surgery
Presenter: Andrea Riccardo Filippi
Session: Poster session 01
211P - Cost-efficient detection of NTRK1, NTRK2 and NTRK3 gene rearrangements using the test for 5’/3’-end unbalanced expression: The analysis of 8075 patients
Presenter: Evgeny Imyanitov
Session: Poster session 01
212P - Extracellular vesicle miRNA as effective biomarkers for predicting antitumor efficacy in lung adenocarcinoma treated with chemotherapy and checkpoint blockade
Presenter: Si Sun
Session: Poster session 01
213P - Unlocking cancer treatment opportunities by population-based advanced diagnostics in Norway
Presenter: Hege Russnes
Session: Poster session 01
214P - PESSA: A shiny app for pathway enrichment score-based survival analysis in cancer
Presenter: Ying Shi
Session: Poster session 01
215P - Identifying predictors of overall survival among TMB-low cancer patients treated with immune checkpoint inhibitors
Presenter: Camila Xavier
Session: Poster session 01
216P - PTCH1 mutation as a potential predictor of immune checkpoint inhibitors in gastrointestinal cancer
Presenter: Yang Tang
Session: Poster session 01