Abstract 199P
Background
Immune checkpoint inhibitors (ICI) are used to manage patients with SCLC and NSCLC lung cancer. Yet, response rates are often low and identifying patients that will benefit from ICIs can be challenging. Accurate and accessible tools that predict ICI responses could enable a precision medicine approach that improves patient outcomes. This study aimed to use ML to predict response to ICI therapies in patients with lung cancer based on clinically available data.
Methods
334 eligible records were reprocessed using one hot encoding. 161 patients had complete datasets available. Differences in data distribution were handled using the Synthetic Minority Oversampling Technique. Six ML algorithms were trained, including Linear regression, Support Vector Classifier, XGBoost Classifier, Random Forest, Decision Tree and Gaussian Naïve Bayes Classifier. The algorithms used 80% of the training data, were tested on 20% of validation data and used the Grid Search Cross-Validation technique for hyperparameter optimization.
Results
Of the 161 patients, 9% had SCLC and 80% had NSCLC. Patients receiving Pembrolizumab, Nivolumab and Atezolizumab comprised 62%, 11% and 25% respectively. XGBoost Classifier predicted response with the most accuracy, 64%. The artificial intelligence (AI) algorithm predicted and stratified ICI response better than PD-L1 levels alone (Table). The model showed good performance status, female gender and adenocarcinoma sub-type predicted response to ICI. Conversely, M1, N2 staging, male gender, squamous cell carcinoma sub-type and receiving Atezolizumab were predictive of disease progression. Table: 199P
Response (R) % | Stable Disease (SD) % | Disease Progression (DP) % | AI-predicted validation cohort % | ||||
R | SD | DP | |||||
Total N=161 | 29 | 8 | 63 | 33 | 6 | 61 | |
PD-L1 levels | <1% N=23 | 13 | 9 | 78 | 33.3 | 0 | 66.6 |
1-50% N=19 | 42 | 0 | 58 | 66.6 | 0 | 33.3 | |
>50% N=33 | 33 | 11 | 56 | 50 | 14 | 36 |
Conclusions
Multiple novel ML models, developed using clinically available data, showed that ICI type, histopathology sub-type and TMN staging impact ICI response in lung cancer. Future studies will seek to include more SCLC cases and compare the prediction accuracy among the three ICIs.
Clinical trial identification
Editorial acknowledgement
Jane Webb for data access from electronic medical records Denny Wong for data cleaning and pre-processing.
Legal entity responsible for the study
The authors.
Funding
Has not received any funding.
Disclosure
V. Balaji: Financial Interests, Personal, Full or part-time Employment: Curenetics. V. Tailor: Financial Interests, Personal, Full or part-time Employment: CurenX. G. Powell: Financial Interests, Personal, Full or part-time Employment: Curenetics. R. Shah: Financial Interests, Personal, Advisory Role: Boehringer Ingelheim, AstraZeneca , Roche, Bristol Myers Squibb, MSD, Pfizer, Lilly, Novartis, Takeda, Bayer, BeiGene, Guardant Health, Sanofi, EQRx. O.M. Adeleke: Financial Interests, Personal, Stocks or ownership: Curenetics. All other authors have declared no conflicts of interest.
Resources from the same session
175P - Radiomic biomarker of vessel tortuosity for monitoring treatment change: Preliminary findings in prospective evaluation of ECOG-ACRIN EA5163
Presenter: Pushkar Mutha
Session: Poster session 01
176P - Enhancing immunotherapy response prediction via multimodal integration of radiology and pathology deep learning models
Presenter: Marta Ligero
Session: Poster session 01
177P - Revealing differences in radiosensitivity of advanced non-small cell lung cancer (NSCLC)through single-cell sequencing data
Presenter: Peimeng You
Session: Poster session 01
178P - Explainable radiomics, machine and deep learning models to predict immune-checkpoint inhibitor treatment efficacy in advanced non-small cell lung cancer patients
Presenter: Leonardo Provenzano
Session: Poster session 01
179P - Molecular tumor board directed treatment for patients with advanced stage solid tumors: A case-control study
Presenter: Dhruv Bansal
Session: Poster session 01
180P - An HLA-diet-oriented system unveiling organ-specific occurrence of multiple primary cancers (MPC) with prevention strategy: A large cohort study of 47,550 cancer patients
Presenter: Zixuan Rong
Session: Poster session 01
181P - GeNeo: Agnostic comprehensive genomic profiling versus limited panel organ-directed next-generation sequencing within the Belgian PRECISION initiative
Presenter: Philippe Aftimos
Session: Poster session 01
182P - ALK fusion detection by RNA next-generation sequencing (NGS) compared to DNA in a large, real-world non-small cell lung cancer (NSCLC) dataset
Presenter: Wade Iams
Session: Poster session 01
183P - Frequency of actionable fusions in 7,735 patients with solid tumors
Presenter: Kevin McDonnell
Session: Poster session 01
184P - Patient-specific HLA-I genotypes predict response to immune checkpoint blockade
Presenter: Kyrillus Shohdy
Session: Poster session 01