Abstract 147P
Background
Non-small cell lung cancer (NSCLC) is one of the most prevalent cancers worldwide. Centre Léon Bérard, Lyon, France has developed a 27-gene expression-based HOT score that predicts outcome in patients with advanced stage treated with immunotherapy. Yet, this signature could be complemented with additional models involving a smaller set of genes. In this study, we used KEM® (Knowledge Extraction and Management) explainable Artificial Intelligence platform, a tool that systematically extracts relations within the variables of a database, to refine the HOT score, shortening the signature and improving performances.
Methods
Starting from GEO warehouse (GSE161537), 2,568 variables were aggregated into a consolidated database with 82 NSCLC patients. Analysis focused on the associations between combinations of genes, previous treatment lines and overall survival (OS): KEM® extracted 194,349 relations that were filtered on the number of involved genes, statistical significance and specificity.
Results
We identified 5 genes, DKC1, HPGD, MLPH, ABCC4 and MVP, combined into two 4-gene signatures with similar performances that predicted survival with a significant interaction between previous treatment lines and gene expression: patients who carry these signatures and that had undergone at least two treatment lines before immunotherapy showed an improved OS in both models (hazard ratio = 0.45 and 0.36). Compared to the HOT score, the number of genes retained was reduced from 27 to 4, and performances improved: balanced accuracy increases from 0.62 (HOT score) to 0.78.
Conclusions
Our analysis enabled the preliminary identification of signatures that complement the HOT score: the impact of previous lines of therapy was included into the model, the number of markers was reduced and performances increased. These findings are currently being confirmed using Cancer Research Institute iAtlas, a database that contains gene expression for over 1,100 cancer patients across five different tissue types. Specific adjustments may be required to account for differences in gene expression measurements between the training and testing tests.
Clinical trial identification
Editorial acknowledgement
Legal entity responsible for the study
The authors.
Funding
Has not received any funding.
Disclosure
All authors have declared no conflicts of interest.
Resources from the same session
197P - Clinical benefit of HER2-targeted therapies versus prior chemotherapy in refractory HER2 expressing and mutant gastrointestinal malignancies
Presenter: Vishesh Khanna
Session: Poster session 01
198P - Detection of ERBB2 (HER2) amplification by next-generation sequencing (NGS) in patients (pts) with gastrointestinal (GI) cancer
Presenter: Yunxiang Qi
Session: Poster session 01
199P - Novel machine learning (ML) algorithm to predict immunotherapy response in small cell (SCLC) and non-small cell (NSCLC) lung cancer
Presenter: Lakshya Sharma
Session: Poster session 01
200P - Precise tumor & patient selection for CDR404: A bispecific & bivalent MAGE-A4 T cell engager
Presenter: Giorgia Giacomazzi
Session: Poster session 01
201P - Afatinib for EGFR, HER2 or HER3 mutated solid tumors: A phase II Belgian precision study
Presenter: Lore Decoster
Session: Poster session 01
202P - Participant perceptions and mammography adherence from DETECT-A: The first prospective interventional trial of a multi-cancer early detection (MCED) blood test
Presenter: Nicholas Papadopoulos
Session: Poster session 01
203P - Genomic characterization of sporadic MET amplified non-small cell lung cancer (NSCLC) and association with real-world outcomes
Presenter: Ryan Gentzler
Session: Poster session 01
204P - Performance assessment of a comprehensive genomic profiling (CGP) NGS kit across multiple study laboratories
Presenter: Jonathan Choi
Session: Poster session 01
205P - A novel immunoprecipitation/PCR method for detection of plasma cfDNA fragments selectively occupied by CTCF in cancer
Presenter: Dorian Pamart
Session: Poster session 01
206P - WAYFIND-R: A global, real-world database of patients (pts) with a solid tumour profiled with next-generation sequencing (NGS)
Presenter: Jean-Yves Blay
Session: Poster session 01