Abstract 147P
Background
Non-small cell lung cancer (NSCLC) is one of the most prevalent cancers worldwide. Centre Léon Bérard, Lyon, France has developed a 27-gene expression-based HOT score that predicts outcome in patients with advanced stage treated with immunotherapy. Yet, this signature could be complemented with additional models involving a smaller set of genes. In this study, we used KEM® (Knowledge Extraction and Management) explainable Artificial Intelligence platform, a tool that systematically extracts relations within the variables of a database, to refine the HOT score, shortening the signature and improving performances.
Methods
Starting from GEO warehouse (GSE161537), 2,568 variables were aggregated into a consolidated database with 82 NSCLC patients. Analysis focused on the associations between combinations of genes, previous treatment lines and overall survival (OS): KEM® extracted 194,349 relations that were filtered on the number of involved genes, statistical significance and specificity.
Results
We identified 5 genes, DKC1, HPGD, MLPH, ABCC4 and MVP, combined into two 4-gene signatures with similar performances that predicted survival with a significant interaction between previous treatment lines and gene expression: patients who carry these signatures and that had undergone at least two treatment lines before immunotherapy showed an improved OS in both models (hazard ratio = 0.45 and 0.36). Compared to the HOT score, the number of genes retained was reduced from 27 to 4, and performances improved: balanced accuracy increases from 0.62 (HOT score) to 0.78.
Conclusions
Our analysis enabled the preliminary identification of signatures that complement the HOT score: the impact of previous lines of therapy was included into the model, the number of markers was reduced and performances increased. These findings are currently being confirmed using Cancer Research Institute iAtlas, a database that contains gene expression for over 1,100 cancer patients across five different tissue types. Specific adjustments may be required to account for differences in gene expression measurements between the training and testing tests.
Clinical trial identification
Editorial acknowledgement
Legal entity responsible for the study
The authors.
Funding
Has not received any funding.
Disclosure
All authors have declared no conflicts of interest.
Resources from the same session
186P - Pooled efficacy and safety data of alectinib (A) vs. crizotinib (C) from the randomized phase III ALEX and J-ALEX trials
Presenter: Marco Tagliamento
Session: Poster session 01
187P - Ipatasertib and atezolizumab in cancers with increased PI3K-AKT pathway activity: First results from the CRAFT trial
Presenter: Christoph Heilig
Session: Poster session 01
188P - The landscape of SMARCA2 genomic alterations in Chinese cancer patients
Presenter: Chen Jiaqi
Session: Poster session 01
189P - Design and enrollment for a classifier development study for a blood-based multi-cancer early detection (MCED) test
Presenter: Christopher Douville
Session: Poster session 01
190P - Quantitative serum tumor markers (CEA, CA19-9, and CA-125) are independently predictive of survival in patients with appendiceal adenocarcinoma
Presenter: John Paul Shen
Session: Poster session 01
191P - Novel approach to proficiency testing demonstrates wide gaps in biomarker quality for colon cancer treatment
Presenter: Kassandra Bisson, Brandon Sheffield
Session: Poster session 01
192P - Impact of oncogenic fibroblast growth factor receptor (FGFR) alterations in patients with advanced solid tumors in a real-world setting
Presenter: Hussein Sweiti
Session: Poster session 01
194P - Early kinetics of C-reactive protein for cancer-agnostic prediction of therapy response and mortality in patients treated with immune checkpoint inhibitors: A multi-center cohort study
Presenter: Dominik Barth
Session: Poster session 01
195P - Identification of biomarkers associated with checkpoint inhibitor pneumonitis based on serum proteomic approach and construction of an online interactive visual prediction model
Presenter: Xiaohui Jia
Session: Poster session 01
196P - Serum metabolomics to determine survival of immunotherapy for advanced non-small cell lung cancer: Metabolomic analysis based on two cohorts
Presenter: Yanjun Xu
Session: Poster session 01