Abstract 147P
Background
Non-small cell lung cancer (NSCLC) is one of the most prevalent cancers worldwide. Centre Léon Bérard, Lyon, France has developed a 27-gene expression-based HOT score that predicts outcome in patients with advanced stage treated with immunotherapy. Yet, this signature could be complemented with additional models involving a smaller set of genes. In this study, we used KEM® (Knowledge Extraction and Management) explainable Artificial Intelligence platform, a tool that systematically extracts relations within the variables of a database, to refine the HOT score, shortening the signature and improving performances.
Methods
Starting from GEO warehouse (GSE161537), 2,568 variables were aggregated into a consolidated database with 82 NSCLC patients. Analysis focused on the associations between combinations of genes, previous treatment lines and overall survival (OS): KEM® extracted 194,349 relations that were filtered on the number of involved genes, statistical significance and specificity.
Results
We identified 5 genes, DKC1, HPGD, MLPH, ABCC4 and MVP, combined into two 4-gene signatures with similar performances that predicted survival with a significant interaction between previous treatment lines and gene expression: patients who carry these signatures and that had undergone at least two treatment lines before immunotherapy showed an improved OS in both models (hazard ratio = 0.45 and 0.36). Compared to the HOT score, the number of genes retained was reduced from 27 to 4, and performances improved: balanced accuracy increases from 0.62 (HOT score) to 0.78.
Conclusions
Our analysis enabled the preliminary identification of signatures that complement the HOT score: the impact of previous lines of therapy was included into the model, the number of markers was reduced and performances increased. These findings are currently being confirmed using Cancer Research Institute iAtlas, a database that contains gene expression for over 1,100 cancer patients across five different tissue types. Specific adjustments may be required to account for differences in gene expression measurements between the training and testing tests.
Clinical trial identification
Editorial acknowledgement
Legal entity responsible for the study
The authors.
Funding
Has not received any funding.
Disclosure
All authors have declared no conflicts of interest.
Resources from the same session
156P - The association between fibrotic endotypes, determined by pre-treatment serum levels of collagen metabolites, and survival outcomes in patients with pancreatic cancer
Presenter: Rasmus Pedersen
Session: Poster session 01
157P - CLDN18 fusions rather than expression is a biomarker related to the efficacy of paclitaxel in patients with ovarian metastasis of gastric cancer
Presenter: Pengfei Yu
Session: Poster session 01
158P - In silico analysis of HER2 enriched subtype and a HER2 index based on transcriptomic data of breast cancer compared to gastric and uterine serous carcinomas
Presenter: Arturo Gonzalez-Vilanova
Session: Poster session 01
159P - Better performance of pan-claudin18 antibodies on claudin18.2 detection in gastric adenocarcinoma than claudin18.2 specific antibody
Presenter: Shujuan NI
Session: Poster session 01
161P - Biomarkers of neoadjuvant combinational therapy for locally advanced gastric or gastroesophageal junction adenocarcinoma
Presenter: Yue Wang
Session: Poster session 01
162P - MR imaging biomarkers profiles in patients with prostate cancer treated with androgen deprivation therapy
Presenter: Angel Luis Sanchez Iglesias
Session: Poster session 01
163P - Genomic alterations in circulating tumor DNA (ctDNA) and response to ABBV-400 treatment in patients with advanced solid tumors
Presenter: Jair Bar
Session: Poster session 01
164P - Early evaluation of effectiveness and cost-effectiveness of ctDNA-guided selection for adjuvant chemotherapy in stage II colon cancer
Presenter: Astrid Kramer
Session: Poster session 01
165P - Correlation between trophoblast cell-surface antigen-2 (Trop-2) expression and pathological complete response (pCR) in HER2-positive early breast cancer (EBC): A sub analysis of PHERGain trial
Presenter: Maria Gion Cortes
Session: Poster session 01