Abstract 1218P
Background
Cancer is considered a leading cause of mortality and morbidity worldwide. This study constitutes one part of the user requirement definition of INCISIVE EU project. The project has been designed to explore the full potential of artificial intelligence (AI)-based technologies in cancer imaging. The study aimed to map cancer care pathways (breast, prostate, colorectal and lung cancers) across INCISIVE partner countries, and identify obstacles within these pathways.
Methods
A qualitative research approach employing email interviews was used. A purposive sampling strategy was employed to recruit ten oncology specialised healthcare professionals from INCISIVE partner countries: Greece, Cyprus, Spain, Italy, Finland, United Kingdom (UK) and Serbia. Data was collected between December 2020 and April 2021. Data was entered into Microsoft Excel spreadsheet to allow content and comparative analysis. Appropriate ethical approval was obtained for this study.
Results
Delays in the diagnosis and treatment of cancer was evident from all the pathways studied. With the exception of the UK, none of the countries studied had official national data regarding delays in cancer diagnosis and treatment. There was a considerable variation in the availability of imaging and diagnostic services across the seven countries that were analysed. Several concerns were also noted for national screening for the four investigated cancer types.
Conclusions
Delays in the diagnosis and treatment of cancer remain challenging issues that need to be addressed. To effectively address these challenges, it is crucial to have a systematic reporting of diagnostic and therapeutic delays in all countries. Proper estimation of the magnitude of the problem is essential, as no problem can be effectively tackled without an accurate understanding of its magnitude. Our findings also support the orientation of the current policies towards early detection and wide scale adoption and implementation of cancer screening, through research, innovation, and technology. Technologies involving AI can have a great potential to revolutionise cancer care delivery.
Clinical trial identification
Editorial acknowledgement
Legal entity responsible for the study
INCISIVE Consortium.
Funding
EU Horizion 2020.
Disclosure
All authors have declared no conflicts of interest.
Resources from the same session
1794P - Prognostic role of metastatic site in patients with de novo metastatic prostate cancer: A population-based analysis in new hormonal agents era
Presenter: Emre Yekeduz
Session: Poster session 14
1795P - China ARCHES: A multicenter phase III randomized double-blind placebo (PBO)-controlled efficacy and safety trial of enzalutamide (ENZA) + androgen deprivation therapy (ADT) vs PBO + ADT in Chinese patients (pts) with metastatic hormone-sensitive prostate cancer (mHSPC)
Presenter: Gongqian Zeng
Session: Poster session 14
1796P - Real-world analysis of metastatic hormone-sensitive prostate cancer: Are randomized clinical trials more trustworthy? Insights from PIONEER, the European network of excellence for big data in prostate cancer
Presenter: Juan Gómez Rivas
Session: Poster session 14
1797P - Application of novel machine learning model in [68Ga] Ga-PSMA-11 PET/CT: Predicting survival in oligometastatic prostate cancer patients
Presenter: Mikaela Dell'Oro
Session: Poster session 14
1800P - Differential tumor gene-expression profiling of patients (pts) with de-novo metastatic castration-sensitive prostate cancer (dn-mCSPC) versus (vs.) mCSPC relapsing after prior localized therapy (PLT-mCSPC)
Presenter: Vinay Mathew Thomas
Session: Poster session 14
1803P - Phase I/II study of bavdegalutamide, a PROTAC androgen receptor (AR) degrader in metastatic castration-resistant prostate cancer (mCRPC): Radiographic progression-free survival (rPFS) in patients (pts) with <italic>AR</italic> ligand-binding domain (LBD) mutations
Presenter: Daniel Petrylak
Session: Poster session 14