Abstract 7P
Background
Metastasis accounts for 90% of cancer related deaths and blocking of metastatic cascade has critical clinical impact. However, the clinical drug development for cancer treatment, including cancer immunotherapies, is evaluated largely depending on their ability to cause tumour shrinkage and ignores the effect on metastasis as it has proven challenging to target. Therefore, there is an urgent need for novel therapeutic strategies and agents targeting metastasis. Using an attenuated Salmonella typhimurium strain YB1 engineered by our lab, we have found a potent suppressive effect of attenuated Salmonella on cancer metastasis, regardless of cancer types and genetic background, by evoking strong anti-metastatic immune response.
Methods
Mutant mice and antibody-mediated cell depletion were used to identify the host genetic and cellular requirement for the bacterial supression of cancer cell metastasis. CyTOF (mass cytometry or cytometry by time of flight) was used to investigate the the innate immune responses after Salmonella treatment.
Results
Our studies showed that suppression of cancer metastasis by attenuated Salmonella only requires the innate immune response. Among the many induced cytokines, IFN-γ was identified as an indispensable factor for inhibiting cancer metastasis. CyTOF and antibody-mediated cell depletion analysis of the innate immune responses after Salmonella treatment, revealed that NK cells are the major factor involved in Salmonella-provoked metastasis suppression.
Conclusions
We found that IFN-γ was mainly produced by NK cells during early Salmonella infection, and in turn, IFN-γ promoted the accumulation, activation and cytotoxicity of NK cells. The IFN-γ-dependent NK cells directly eliminated newly accumulated cancer cells in the lung to block the cancer metastasis cascade in response to the Salmonella treatment.
Clinical trial identification
Editorial acknowledgement
Legal entity responsible for the study
The author.
Funding
This work was supported by grants from the Shenzhen Peacock Team Project (KQTD2015033117210153) and Shenzhen Science and Technology Innovation Committee Basic Science Research Grant (JCYJ20170413154523577).
Disclosure
All authors have declared no conflicts of interest.
Resources from the same session
57P - Metastasis organotropism: Unveiling associated proteins using network biology
Presenter: Margarida Carrolo
Session: Poster session 09
59P - Correlation of tumor microenvironment signature in advanced stage non-small cell lung cancer with EGFR mutation who received EGFR-TKIs
Presenter: Chaiyapong Ngamchokwathana
Session: Poster session 09
60P - Establishment and characterization of a novel lung adenocarcinoma cell line HX-JCJ harboring MET ex14 skipping mutation
Presenter: Xuejin Ou
Session: Poster session 09
61P - Next generation sequencing and its clinical utility in advanced cancer: Single institute experience from low-middle income country
Presenter: Amit Badola
Session: Poster session 09
62P - Prebiotics modulate gut microbiota-mediated T cell immunity to enhance sintilimab inhibition of lung cancer
Presenter: QIN YAN
Session: Poster session 09
63P - Addition of human chorionic gonadotropin to the current standard mobilization approach with granulocyte-colony stimulating factor increases overall survival in a murine model of peripheral blood stem cell transplantation: Are we far enough for therapy?
Presenter: Andrei Cismaru
Session: Poster session 09
64P - Developing novel therapeutics for bladder cancer leveraging drosophila models
Presenter: Takuya Moriguchi
Session: Poster session 09
65P - Ionizing radiation induces vascular smooth muscle cell senescence through activating NF-κB-CTCF-p16 pathway
Presenter: xuefeng zheng
Session: Poster session 09
66P - Exploring the radiobiology and dosimetry of targeted alpha therapy as a tool to optimize its clinical application: A preclinical study
Presenter: Maria Filomena Botelho
Session: Poster session 09
67P - The effect of non-viral gene-immune therapy via OX40L or 4-1BBL on murine subcutaneous CT26 colon cancer model
Presenter: Olga Rakitina
Session: Poster session 09