Abstract 7P
Background
Metastasis accounts for 90% of cancer related deaths and blocking of metastatic cascade has critical clinical impact. However, the clinical drug development for cancer treatment, including cancer immunotherapies, is evaluated largely depending on their ability to cause tumour shrinkage and ignores the effect on metastasis as it has proven challenging to target. Therefore, there is an urgent need for novel therapeutic strategies and agents targeting metastasis. Using an attenuated Salmonella typhimurium strain YB1 engineered by our lab, we have found a potent suppressive effect of attenuated Salmonella on cancer metastasis, regardless of cancer types and genetic background, by evoking strong anti-metastatic immune response.
Methods
Mutant mice and antibody-mediated cell depletion were used to identify the host genetic and cellular requirement for the bacterial supression of cancer cell metastasis. CyTOF (mass cytometry or cytometry by time of flight) was used to investigate the the innate immune responses after Salmonella treatment.
Results
Our studies showed that suppression of cancer metastasis by attenuated Salmonella only requires the innate immune response. Among the many induced cytokines, IFN-γ was identified as an indispensable factor for inhibiting cancer metastasis. CyTOF and antibody-mediated cell depletion analysis of the innate immune responses after Salmonella treatment, revealed that NK cells are the major factor involved in Salmonella-provoked metastasis suppression.
Conclusions
We found that IFN-γ was mainly produced by NK cells during early Salmonella infection, and in turn, IFN-γ promoted the accumulation, activation and cytotoxicity of NK cells. The IFN-γ-dependent NK cells directly eliminated newly accumulated cancer cells in the lung to block the cancer metastasis cascade in response to the Salmonella treatment.
Clinical trial identification
Editorial acknowledgement
Legal entity responsible for the study
The author.
Funding
This work was supported by grants from the Shenzhen Peacock Team Project (KQTD2015033117210153) and Shenzhen Science and Technology Innovation Committee Basic Science Research Grant (JCYJ20170413154523577).
Disclosure
All authors have declared no conflicts of interest.
Resources from the same session
89P - Cold atmospheric plasma-activated fluids as a potential new intravesical agent for the treatment of bladder cancer
Presenter: Maria Filomena Botelho
Session: Poster session 09
90P - Discovery of CMPD1 as a tumor-specific cytotoxic microtubule inhibitor
Presenter: Mamoru Takada
Session: Poster session 09
91P - Erythroid precursor-differentiated myeloid cells promote pulmonary metastasis in hepatocellular carcinoma
Presenter: Wei-hang Zhu
Session: Poster session 09
92P - Discovery of novel AXL and MER inhibitors as potential anticancer and immune modulator drugs
Presenter: Hsing-Pang Hsieh
Session: Poster session 09
93P - Transcriptome changes of immune cells across chemotherapy of triple-negative breast cancer
Presenter: Tatiana Gerashchenko
Session: Poster session 09
509P - Spatial analysis of tumor-associated macrophages within the tumor microenvironment of primary tumors and matched brain metastases
Presenter: Markus Kleinberger
Session: Poster session 09
510P - CD47 regulates cellular and metabolic plasticity in glioblastoma
Presenter: Ruhi Polara
Session: Poster session 09
511P - Immunodisruptive conditions and glioma diagnosis: 24-year retrospective study of an under-recognized scenario
Presenter: Santiago Cabezas-Camarero
Session: Poster session 09
512P - Heterozygous germline Fanconi anemia-related gene mutations increase susceptibility to central nervous system germ cell tumors
Presenter: Guangyu Wang
Session: Poster session 09
513P - Cyclin pathway in oligodendrogliomas IDH mut and 1p/19q codeleted
Presenter: Maria Angeles Vaz Salgado
Session: Poster session 09