Abstract 7P
Background
Metastasis accounts for 90% of cancer related deaths and blocking of metastatic cascade has critical clinical impact. However, the clinical drug development for cancer treatment, including cancer immunotherapies, is evaluated largely depending on their ability to cause tumour shrinkage and ignores the effect on metastasis as it has proven challenging to target. Therefore, there is an urgent need for novel therapeutic strategies and agents targeting metastasis. Using an attenuated Salmonella typhimurium strain YB1 engineered by our lab, we have found a potent suppressive effect of attenuated Salmonella on cancer metastasis, regardless of cancer types and genetic background, by evoking strong anti-metastatic immune response.
Methods
Mutant mice and antibody-mediated cell depletion were used to identify the host genetic and cellular requirement for the bacterial supression of cancer cell metastasis. CyTOF (mass cytometry or cytometry by time of flight) was used to investigate the the innate immune responses after Salmonella treatment.
Results
Our studies showed that suppression of cancer metastasis by attenuated Salmonella only requires the innate immune response. Among the many induced cytokines, IFN-γ was identified as an indispensable factor for inhibiting cancer metastasis. CyTOF and antibody-mediated cell depletion analysis of the innate immune responses after Salmonella treatment, revealed that NK cells are the major factor involved in Salmonella-provoked metastasis suppression.
Conclusions
We found that IFN-γ was mainly produced by NK cells during early Salmonella infection, and in turn, IFN-γ promoted the accumulation, activation and cytotoxicity of NK cells. The IFN-γ-dependent NK cells directly eliminated newly accumulated cancer cells in the lung to block the cancer metastasis cascade in response to the Salmonella treatment.
Clinical trial identification
Editorial acknowledgement
Legal entity responsible for the study
The author.
Funding
This work was supported by grants from the Shenzhen Peacock Team Project (KQTD2015033117210153) and Shenzhen Science and Technology Innovation Committee Basic Science Research Grant (JCYJ20170413154523577).
Disclosure
All authors have declared no conflicts of interest.
Resources from the same session
15P - CBL E3 ubiquitin ligases are key inhibitory regulators in PD-1/LAG-3 co-signaling in human cancers, targeted through bispecific co-blockade
Presenter: Luisa Chocarro
Session: Poster session 09
16P - Terminally exhausted CD8+ T cells and increased immunosuppressive soluble factors in malignant ascites of patients with gastric cancer with peritoneal metastasis
Presenter: Hye Sook Han
Session: Poster session 09
17P - Continued expansion of long-lived effect CD8+ T cells associates with durable response post-PD-1 blockade
Presenter: Robert Watson
Session: Poster session 09
18P - Exposure of calreticulin is required for vitamin C immunomediated cancer surveillance
Presenter: Alessandro Cavaliere
Session: Poster session 09
19P - Preclinical and clinical significance of VEGF deprivation in ovarian cancer through a specific active immunotherapy
Presenter: Yanelys Morera
Session: Poster session 09
20P - The essential role of DNA repair in the pharmacological activities of AST-3424
Presenter: Fanying Meng
Session: Poster session 09
21P - Implications of KMT2C knockdown for DNA damage repair in breast cancer
Presenter: Philip Bredin
Session: Poster session 09
22P - Clinical significance of DNA damage response mutations in early stage NSCLC
Presenter: Haoran Zhang
Session: Poster session 09
23P - PMC-309: A highly selective anti-VISTA antibody reverses immunosuppressive TME to immune-supportive
Presenter: Cheon Ho Park
Session: Poster session 09
24P - Single cell transcriptomics of the immune cells during chemotherapy in triple-negative breast cancer patients
Presenter: Anastasia Frolova
Session: Poster session 09