Abstract 86P
Background
Autophagy achieves a tumor-suppressing function in the initial stages of cancer by eliminating protein aggregates and damaged organelles that might promote genomic instability and lead to tumor formation. Autophagy induced by hypoxia or metabolic stress also plays an important role in the regulation of inflammatory pathways. In cancer cells, this may lead to secretion of pro- and/ or anti-inflammatory cytokines and chemokines which may help the immune escape of the tumor. However, the underlying mechanism of autophagy-mediated modulation of anti-tumor immune response is not yet fully understood. Our aim is to investigate whether chemotherapy-induced autophagy-associated secretome has the potential to modulate the NK cell-mediated anti-tumor immune responses.
Methods
Initially, western blot and immunostaining analyses were performed for autophagy markers (LC3I/II and p62) to demonstrate that Etoposide (Eto) induces autophagy in MCF-7 cells. LC/MS-MS analysis was performed to determine the content of chemotherapy-induced autophagic secretome in supernatants of autophagy-induced MCF-7 cell cultures. Finally, how the chemotherapy-induced autophagic secretome effects the capacity of DNAM1-NK-92 cells to target MCF-7 cells was determined by degranulation assays.
Results
We demonstrated Etoposide (Eto) induces autophagy in MCF-7 cells as confirmed by detection of autophagy markers including LC3I/II and p62 by WB and by immunostaining analysis. LC/MS-MS results revealed that, metabolic enzymes, tumor antigens, chaperones and metastasis-related proteins were secreted during etoposide induced autophagy which could be reduced by use of Chloroquin. When wildtype or DNAM1 overexpressing NK-92 cells were treated with autophagic secretomes, it was observed that there were differences in the capacity of targeting MCF-7 cells.
Conclusions
This study provides new insights in the field of chemo-immunotherapy by characterizing the chemotherapy-induced autophagic secretome and determining its possible effect on NK cells.
Clinical trial identification
Editorial acknowledgement
Legal entity responsible for the study
M.K. Kilic Eren.
Funding
Adnan Menderes University Scientific Research Foundation, The Scientific and Technological Research Council of Turkey.
Disclosure
All authors have declared no conflicts of interest.
Resources from the same session
4P - Spatially resolved transcriptome elucidates bidirectional tertiary lymphoid structure interacts with tumor microenvironment of non-small cell lung cancer
Presenter: Xin Zhao
Session: Poster session 09
5P - Tertiary lymphoid structures (TLS) presence and stromal blood vessels heterogeneity differentially influence recurrence, lymphovascular, and perineural invasion in breast cancer molecular subtypes
Presenter: Andrei Cosma
Session: Poster session 09
6P - Combined single-cell and spatially resolved mapping of the human lymph node ecosystem reveals fundamental principles of lymphoma tissue organization
Presenter: Daniel Hübschmann
Session: Poster session 09
7P - Engineered salmonella blocks cancer metastasis by activating NK cells in an IFN-γ-dependent manner
Presenter: JIANDONG HUANG
Session: Poster session 09
8P - Modulating tumor microenvironment using a VEGF active immunotherapeutic approach in gastrointestinal tumors: Beyond angiogenesis modulation
Presenter: Mónica Bequet-Romero
Session: Poster session 09
9P - Identification of a μCT-based radiomic signature of CD8+ tumour infiltrating lymphocytes in an orthotopic murine model
Presenter: Giulia Mazzaschi
Session: Poster session 09
10P - Cancer cells induce intracellular gap formation in sinusoidal endothelial cells to produce liver metastasis through pro-inflammatory paracrine mechanisms
Presenter: Hoang Truong
Session: Poster session 09
11P - Targeting stromal cells to reverse immune suppression in triple-negative breast cancer
Presenter: Julia Chen
Session: Poster session 09
12P - Immuno-suppressive role of tumour-derived GDF-15 on myeloid cells
Presenter: Christine Schuberth-Wagner
Session: Poster session 09
13P - Disrupting the immunosuppressive tumor microenvironment using genetically engineered macrophages for triple-negative breast cancer therapy
Presenter: Sabrina Traxel
Session: Poster session 09