Abstract 86P
Background
Autophagy achieves a tumor-suppressing function in the initial stages of cancer by eliminating protein aggregates and damaged organelles that might promote genomic instability and lead to tumor formation. Autophagy induced by hypoxia or metabolic stress also plays an important role in the regulation of inflammatory pathways. In cancer cells, this may lead to secretion of pro- and/ or anti-inflammatory cytokines and chemokines which may help the immune escape of the tumor. However, the underlying mechanism of autophagy-mediated modulation of anti-tumor immune response is not yet fully understood. Our aim is to investigate whether chemotherapy-induced autophagy-associated secretome has the potential to modulate the NK cell-mediated anti-tumor immune responses.
Methods
Initially, western blot and immunostaining analyses were performed for autophagy markers (LC3I/II and p62) to demonstrate that Etoposide (Eto) induces autophagy in MCF-7 cells. LC/MS-MS analysis was performed to determine the content of chemotherapy-induced autophagic secretome in supernatants of autophagy-induced MCF-7 cell cultures. Finally, how the chemotherapy-induced autophagic secretome effects the capacity of DNAM1-NK-92 cells to target MCF-7 cells was determined by degranulation assays.
Results
We demonstrated Etoposide (Eto) induces autophagy in MCF-7 cells as confirmed by detection of autophagy markers including LC3I/II and p62 by WB and by immunostaining analysis. LC/MS-MS results revealed that, metabolic enzymes, tumor antigens, chaperones and metastasis-related proteins were secreted during etoposide induced autophagy which could be reduced by use of Chloroquin. When wildtype or DNAM1 overexpressing NK-92 cells were treated with autophagic secretomes, it was observed that there were differences in the capacity of targeting MCF-7 cells.
Conclusions
This study provides new insights in the field of chemo-immunotherapy by characterizing the chemotherapy-induced autophagic secretome and determining its possible effect on NK cells.
Clinical trial identification
Editorial acknowledgement
Legal entity responsible for the study
M.K. Kilic Eren.
Funding
Adnan Menderes University Scientific Research Foundation, The Scientific and Technological Research Council of Turkey.
Disclosure
All authors have declared no conflicts of interest.
Resources from the same session
14P - Peripheral immune kinetics in survival prediction of small cell lung cancer patients treated with immune checkpoint blockade therapy
Presenter: MIGUEL GALINDO CAMPOS
Session: Poster session 09
15P - CBL E3 ubiquitin ligases are key inhibitory regulators in PD-1/LAG-3 co-signaling in human cancers, targeted through bispecific co-blockade
Presenter: Luisa Chocarro
Session: Poster session 09
16P - Terminally exhausted CD8+ T cells and increased immunosuppressive soluble factors in malignant ascites of patients with gastric cancer with peritoneal metastasis
Presenter: Hye Sook Han
Session: Poster session 09
17P - Continued expansion of long-lived effect CD8+ T cells associates with durable response post-PD-1 blockade
Presenter: Robert Watson
Session: Poster session 09
18P - Exposure of calreticulin is required for vitamin C immunomediated cancer surveillance
Presenter: Alessandro Cavaliere
Session: Poster session 09
19P - Preclinical and clinical significance of VEGF deprivation in ovarian cancer through a specific active immunotherapy
Presenter: Yanelys Morera
Session: Poster session 09
20P - The essential role of DNA repair in the pharmacological activities of AST-3424
Presenter: Fanying Meng
Session: Poster session 09
21P - Implications of KMT2C knockdown for DNA damage repair in breast cancer
Presenter: Philip Bredin
Session: Poster session 09
22P - Clinical significance of DNA damage response mutations in early stage NSCLC
Presenter: Haoran Zhang
Session: Poster session 09
23P - PMC-309: A highly selective anti-VISTA antibody reverses immunosuppressive TME to immune-supportive
Presenter: Cheon Ho Park
Session: Poster session 09