Abstract 86P
Background
Autophagy achieves a tumor-suppressing function in the initial stages of cancer by eliminating protein aggregates and damaged organelles that might promote genomic instability and lead to tumor formation. Autophagy induced by hypoxia or metabolic stress also plays an important role in the regulation of inflammatory pathways. In cancer cells, this may lead to secretion of pro- and/ or anti-inflammatory cytokines and chemokines which may help the immune escape of the tumor. However, the underlying mechanism of autophagy-mediated modulation of anti-tumor immune response is not yet fully understood. Our aim is to investigate whether chemotherapy-induced autophagy-associated secretome has the potential to modulate the NK cell-mediated anti-tumor immune responses.
Methods
Initially, western blot and immunostaining analyses were performed for autophagy markers (LC3I/II and p62) to demonstrate that Etoposide (Eto) induces autophagy in MCF-7 cells. LC/MS-MS analysis was performed to determine the content of chemotherapy-induced autophagic secretome in supernatants of autophagy-induced MCF-7 cell cultures. Finally, how the chemotherapy-induced autophagic secretome effects the capacity of DNAM1-NK-92 cells to target MCF-7 cells was determined by degranulation assays.
Results
We demonstrated Etoposide (Eto) induces autophagy in MCF-7 cells as confirmed by detection of autophagy markers including LC3I/II and p62 by WB and by immunostaining analysis. LC/MS-MS results revealed that, metabolic enzymes, tumor antigens, chaperones and metastasis-related proteins were secreted during etoposide induced autophagy which could be reduced by use of Chloroquin. When wildtype or DNAM1 overexpressing NK-92 cells were treated with autophagic secretomes, it was observed that there were differences in the capacity of targeting MCF-7 cells.
Conclusions
This study provides new insights in the field of chemo-immunotherapy by characterizing the chemotherapy-induced autophagic secretome and determining its possible effect on NK cells.
Clinical trial identification
Editorial acknowledgement
Legal entity responsible for the study
M.K. Kilic Eren.
Funding
Adnan Menderes University Scientific Research Foundation, The Scientific and Technological Research Council of Turkey.
Disclosure
All authors have declared no conflicts of interest.
Resources from the same session
67P - The effect of non-viral gene-immune therapy via OX40L or 4-1BBL on murine subcutaneous CT26 colon cancer model
Presenter: Olga Rakitina
Session: Poster session 09
68P - Dendritic polylysine with paclitaxel and triptolide codelivery for enhanced NSCLC ferroptosis through the accumulation of ROS
Presenter: Huae Xu
Session: Poster session 09
69P - Novel monoclonal antibodies can distinguish Cripto-1 from Cripto-3 proteins: Clinical implications and potential new biomarkers
Presenter: Josune Garcia-Sanmartin
Session: Poster session 09
70P - The human intratumor mycobiome is significantly influenced by an individual's race
Presenter: Dan Coster
Session: Poster session 09
71P - Preclinical characterization of ARX305: A next-generation anti-CD70 antibody drug conjugate for the treatment of CD70-expressing cancers
Presenter: Lillian Skidmore
Session: Poster session 09
72P - Impact of extended panel of genes for germline cancer testing
Presenter: Shaheenah Dawood
Session: Poster session 09
73P - Preclinical and clinical presentation of the nerve-driven tumor spread
Presenter: Dawid Sigorski
Session: Poster session 09
74P - Characterization of ERBB2 variation and their association with immune response in solid tumours
Presenter: Dong Wang
Session: Poster session 09
75P - Double-stranded RNA transfection induced anti-tumour effect mediated by dual RIG-I and TLR-3 immune pathways
Presenter: Jiayu Tai
Session: Poster session 09
76P - Improvement of whole-cell cancer vaccine anti-tumor effect by different injection methods
Presenter: Chin yang Chang
Session: Poster session 09