Abstract 144P
Background
Clinical interpretation of complex biomarkers for personalized treatment decisions requires extensive manual investigations of literature and databases. Recent progress in artificial intelligence (AI) and conversational large language models (LLM) suggests that these might be useful for assisting with automated screening and integration of large biomedical datasets. To better define their role in this application, we investigated several recent LLM as a support tool for precision oncology.
Methods
We generated ten fictional cases of patients with advanced cancers and genetic alterations. Each of the cases was submitted to four LLM (ChatGPT, Galactica, Perplexity, BioMedLM) and one physician as expert human annotator to identify personalized treatment options (TO). TO were blinded and presented to a molecular tumor board (MTB) if they were a) identified by a human, b) identified by more than one LLM or c) identified by a LLM and associated with clinical evidence. MTB members were asked to rate the likelihood of TO to come from an AI on a scale from 0 to 10 (0 extremely unlikely, 10 extremely likely) and to rate their usefulness.
Results
A median number of 4 and 3, 7.5, 11.5, and 13 TO per patient were identified by the human expert and four LLM, respectively. When considering the expert as gold standard, the four LLM reached median F1 scores of 0.04, 0.17, 0.14, and 0.19 over all patients combined. Combined TO by LLM reached a precision of 0.29 and a recall of 0.29 for a F1 score of 0.29 over all patients. When rated for recognizability as AI-generated, LLM-generated TO achieved a median of 8 (range 1 to 10) in contrast to 2 points (range 0 to 6) for manually annotated cases. At least one LLM-generated TO per patient was generally considered useful by MTB members. Two unique useful TO (including one unique treatment strategy) were identified only by a LLM.
Conclusions
Treatment recommendations of LLM in PO cases do not yet reach the quality and credibility of human experts. However, they can already generate useful ideas. Considering the speed of technological progress, LLM could increasingly assist with the screening and selection of relevant biomedical literature to support evidence-based, personalized treatment decisions.
Clinical trial identification
Editorial acknowledgement
Legal entity responsible for the study
The authors.
Funding
Has not received any funding.
Disclosure
D.T. Rieke: Financial Interests, Personal, Advisory Board: Bayer, Alacris Theranostics; Financial Interests, Personal, Invited Speaker: Roche, BMS, Lilly; Non-Financial Interests, Principal Investigator: Bayer. M. Schmidt: Financial Interests, Personal, Advisory Role: Mika-Health. U. Keilholz: Financial Interests, Personal, Other: Amgen, AstraZeneca, BMS, Boehringer Ingelheim, Glycotope, Innate, Lilly, MedImmune, Merck Serono, MSD, Novartis, Pfizer, Roche, Sirtex. All other authors have declared no conflicts of interest.
Resources from the same session
207P - Palbociclib (P) in patients (pts) with solid tumors with CDK4 or CDK6 amplification (amp): Results from the Targeted Agent and Profiling Utilization Registry (TAPUR) study
Presenter: Maged Khalil
Session: Poster session 01
208P - Identification of BCOR mutation as a novel predictor of immunotherapy efficacy in gastrointestinal tumors
Presenter: Wuping Wang
Session: Poster session 01
209P - Molecular atlas of copy number variation(CNV) in lung cancer with brain metastases
Presenter: Xianfeng Zhang
Session: Poster session 01
210P - Lung tumour vascularity is a risk factor for survival in NSCLC patients undergoing surgery
Presenter: Andrea Riccardo Filippi
Session: Poster session 01
211P - Cost-efficient detection of NTRK1, NTRK2 and NTRK3 gene rearrangements using the test for 5’/3’-end unbalanced expression: The analysis of 8075 patients
Presenter: Evgeny Imyanitov
Session: Poster session 01
212P - Extracellular vesicle miRNA as effective biomarkers for predicting antitumor efficacy in lung adenocarcinoma treated with chemotherapy and checkpoint blockade
Presenter: Si Sun
Session: Poster session 01
213P - Unlocking cancer treatment opportunities by population-based advanced diagnostics in Norway
Presenter: Hege Russnes
Session: Poster session 01
214P - PESSA: A shiny app for pathway enrichment score-based survival analysis in cancer
Presenter: Ying Shi
Session: Poster session 01
215P - Identifying predictors of overall survival among TMB-low cancer patients treated with immune checkpoint inhibitors
Presenter: Camila Xavier
Session: Poster session 01
216P - PTCH1 mutation as a potential predictor of immune checkpoint inhibitors in gastrointestinal cancer
Presenter: Yang Tang
Session: Poster session 01