Abstract 144P
Background
Clinical interpretation of complex biomarkers for personalized treatment decisions requires extensive manual investigations of literature and databases. Recent progress in artificial intelligence (AI) and conversational large language models (LLM) suggests that these might be useful for assisting with automated screening and integration of large biomedical datasets. To better define their role in this application, we investigated several recent LLM as a support tool for precision oncology.
Methods
We generated ten fictional cases of patients with advanced cancers and genetic alterations. Each of the cases was submitted to four LLM (ChatGPT, Galactica, Perplexity, BioMedLM) and one physician as expert human annotator to identify personalized treatment options (TO). TO were blinded and presented to a molecular tumor board (MTB) if they were a) identified by a human, b) identified by more than one LLM or c) identified by a LLM and associated with clinical evidence. MTB members were asked to rate the likelihood of TO to come from an AI on a scale from 0 to 10 (0 extremely unlikely, 10 extremely likely) and to rate their usefulness.
Results
A median number of 4 and 3, 7.5, 11.5, and 13 TO per patient were identified by the human expert and four LLM, respectively. When considering the expert as gold standard, the four LLM reached median F1 scores of 0.04, 0.17, 0.14, and 0.19 over all patients combined. Combined TO by LLM reached a precision of 0.29 and a recall of 0.29 for a F1 score of 0.29 over all patients. When rated for recognizability as AI-generated, LLM-generated TO achieved a median of 8 (range 1 to 10) in contrast to 2 points (range 0 to 6) for manually annotated cases. At least one LLM-generated TO per patient was generally considered useful by MTB members. Two unique useful TO (including one unique treatment strategy) were identified only by a LLM.
Conclusions
Treatment recommendations of LLM in PO cases do not yet reach the quality and credibility of human experts. However, they can already generate useful ideas. Considering the speed of technological progress, LLM could increasingly assist with the screening and selection of relevant biomedical literature to support evidence-based, personalized treatment decisions.
Clinical trial identification
Editorial acknowledgement
Legal entity responsible for the study
The authors.
Funding
Has not received any funding.
Disclosure
D.T. Rieke: Financial Interests, Personal, Advisory Board: Bayer, Alacris Theranostics; Financial Interests, Personal, Invited Speaker: Roche, BMS, Lilly; Non-Financial Interests, Principal Investigator: Bayer. M. Schmidt: Financial Interests, Personal, Advisory Role: Mika-Health. U. Keilholz: Financial Interests, Personal, Other: Amgen, AstraZeneca, BMS, Boehringer Ingelheim, Glycotope, Innate, Lilly, MedImmune, Merck Serono, MSD, Novartis, Pfizer, Roche, Sirtex. All other authors have declared no conflicts of interest.
Resources from the same session
145P - Identification of biomarkers of survival across multiple cancer types using eXplainable artificial intelligence
Presenter: Francesca Angileri
Session: Poster session 01
147P - Non-small cell lung cancer: Artificial intelligence enables the identification of survival signatures complementary to an Immunologically active gene expression signature involving previous therapies
Presenter: Pierre Saintigny
Session: Poster session 01
149P - Assessing the effect of single dose trastuzumab and pertuzumab (HP) on biological changes and pathological complete response (pCR) in ERBB2+ Breast Cancer: Results from the neoadjuvant BionHER study
Presenter: Nadia Gomez Serra
Session: Poster session 01
150P - Validation of a genomic assay in early-stage HER2+ breast cancer (BC) treated with trastuzumab and pertuzumab (HP): A correlative analysis from PHERGain phase II trial
Presenter: Antonio Llombart Cussac
Session: Poster session 01
152P - Efficacy of olaparib in advanced cancers with germline or somatic tumor mutations in BRCA1, BRCA2, CHEK2 and ATM: A Belgian precision tumor-agnostic phase II study
Presenter: Sofie Joris
Session: Poster session 01
153P - Descriptive analysis of the location of point mutations in BRCA and the risk of breast or ovarian cancer diagnosis
Presenter: Pablo Torres-Mozas
Session: Poster session 01
154P - Highly sensitive serum volatolomic biomarkers for pancreatic cancer diagnosis and prognosis
Presenter: Alfredo Martínez
Session: Poster session 01
155P - Exploring the utility of serum anti-tNASP antibodies as a screening biomarker in prostate, pancreatic, and ovarian cancer
Presenter: Oleg Alekseev
Session: Poster session 01