Abstract 144P
Background
Clinical interpretation of complex biomarkers for personalized treatment decisions requires extensive manual investigations of literature and databases. Recent progress in artificial intelligence (AI) and conversational large language models (LLM) suggests that these might be useful for assisting with automated screening and integration of large biomedical datasets. To better define their role in this application, we investigated several recent LLM as a support tool for precision oncology.
Methods
We generated ten fictional cases of patients with advanced cancers and genetic alterations. Each of the cases was submitted to four LLM (ChatGPT, Galactica, Perplexity, BioMedLM) and one physician as expert human annotator to identify personalized treatment options (TO). TO were blinded and presented to a molecular tumor board (MTB) if they were a) identified by a human, b) identified by more than one LLM or c) identified by a LLM and associated with clinical evidence. MTB members were asked to rate the likelihood of TO to come from an AI on a scale from 0 to 10 (0 extremely unlikely, 10 extremely likely) and to rate their usefulness.
Results
A median number of 4 and 3, 7.5, 11.5, and 13 TO per patient were identified by the human expert and four LLM, respectively. When considering the expert as gold standard, the four LLM reached median F1 scores of 0.04, 0.17, 0.14, and 0.19 over all patients combined. Combined TO by LLM reached a precision of 0.29 and a recall of 0.29 for a F1 score of 0.29 over all patients. When rated for recognizability as AI-generated, LLM-generated TO achieved a median of 8 (range 1 to 10) in contrast to 2 points (range 0 to 6) for manually annotated cases. At least one LLM-generated TO per patient was generally considered useful by MTB members. Two unique useful TO (including one unique treatment strategy) were identified only by a LLM.
Conclusions
Treatment recommendations of LLM in PO cases do not yet reach the quality and credibility of human experts. However, they can already generate useful ideas. Considering the speed of technological progress, LLM could increasingly assist with the screening and selection of relevant biomedical literature to support evidence-based, personalized treatment decisions.
Clinical trial identification
Editorial acknowledgement
Legal entity responsible for the study
The authors.
Funding
Has not received any funding.
Disclosure
D.T. Rieke: Financial Interests, Personal, Advisory Board: Bayer, Alacris Theranostics; Financial Interests, Personal, Invited Speaker: Roche, BMS, Lilly; Non-Financial Interests, Principal Investigator: Bayer. M. Schmidt: Financial Interests, Personal, Advisory Role: Mika-Health. U. Keilholz: Financial Interests, Personal, Other: Amgen, AstraZeneca, BMS, Boehringer Ingelheim, Glycotope, Innate, Lilly, MedImmune, Merck Serono, MSD, Novartis, Pfizer, Roche, Sirtex. All other authors have declared no conflicts of interest.
Resources from the same session
166P - Metabolomic prediction of breast cancer treatment toxicities
Presenter: Max Piffoux
Session: Poster session 01
167P - A tumor immune microenvironment-based model for prediction of everolimus efficacy in premenopausal women with hormone receptor-positive/human epidermal growth factor receptor 2-negative advanced breast cancer: Preliminary results from MIRACLE trial
Presenter: Tan Yujing
Session: Poster session 01
168P - HUWE1 inhibition has tumor suppressive effect in triple-negative breast cancer cell lines by modulating glycolytic and immune modulatory markers
Presenter: SHRUTI KAHOL
Session: Poster session 01
169P - Integration of metabolomics and transcriptomics to reveal potential biomarkers associated with treatment response of neoadjuvant therapy in HER2+ breast cancer
Presenter: Ningning Zhang
Session: Poster session 01
170P - Clinical significance and functional role of GPR56 (ADGRG1) in breast cancer
Presenter: Haizhu Chen
Session: Poster session 01
172P - T cell-derived circulating DNA and tumour inflammatory microenvironment in EGFR-mutant advanced non-small cell lung cancer: Correlation with the outcome of EGFR TKI treatment
Presenter: Nicha Zungsontiporn
Session: Poster session 01
173P - Expression of programmed death-ligand 1 and EGFR on circulating tumour cells in advanced lung cancer patients
Presenter: Jayant Khandare
Session: Poster session 01
174P - Frequency and prognostic value of circulating tumor cells in cancer of unknown primary
Presenter: Maria Pouyiourou
Session: Poster session 01
175P - Radiomic biomarker of vessel tortuosity for monitoring treatment change: Preliminary findings in prospective evaluation of ECOG-ACRIN EA5163
Presenter: Pushkar Mutha
Session: Poster session 01