Abstract 1244P
Background
Immunohistochemical PD-L1 expression, a tissue-based biomarker that predicts response to immune checkpoint therapy, is used to guide treatment decisions in advanced non-small cell lung cancer (NSCLC). Artificial intelligence (AI) technology may optimize PD-L1 scoring in regard to standardization, accuracy and efficiency. However, previous such approaches failed to show consistency across samples derived from different sites and scanning devices.
Methods
We developed an AI software for automated PD-L1 tumor proportion scoring (TPS) according to international guidelines. Four pathologists assessed PD-L1 expression on 146 whole-slide images (WSI) of NSCLC biopsies obtained from three institutions, four scanning hardware types and the Ventana SP263 assay. Pathologists selected one representative region of interest (ROI) per WSI and scored PD-L1 without AI assistance (path-only). After a 2-week washout period, the same pathologists were presented with the same ROIs together with AI results (AI-only). Being able to adjust the AI results, pathologists concluded the final scores (AI+path). In addition, TPS scores were determined globally on the WSIs by the AI without human intervention and were compared against clinical WSI scores.
Results
For the threshold of TPS≥1%, inter-rater agreements between a) pathologist and AI+path, b) pathologist and AI-only, and c) AI-only and AI+path were 86.3%, 85.6%, and 89.7%, respectively (for TPS≥50%: a) 85.6%, b) 80.8%, c) 92.5%). With AI assistance, pathologists scored faster compared to manual scoring (median time: 72 vs. 117 sec/ROI; p<0.01). Additionally, scoring of WSIs by the AI without human intervention showed higher agreement with clinical scores than inter-human agreement (<85%) reported in literature.
Conclusions
Using challenging validation data from three institutions and four scanners, ROI scoring with the support of our AI PD-L1 quantifier showed high agreement with pathologists, while reducing assessment time. Of note, fully automatic global AI scoring on WSIs resulted in equally high agreement rates. These results demonstrate suitability and safety of the AI system for application in clinical routine, ultimately improving accuracy and efficiency of PD-L1 scoring.
Clinical trial identification
Editorial acknowledgement
Legal entity responsible for the study
Mindpeak GmbH.
Funding
Mindpeak GmbH.
Disclosure
R. Erber, C. Schaaf, N. Abele: Financial Interests, Personal, Speaker, Consultant, Advisor: Mindpeak GmbH. R. Banisch, M. Päpper, P. Frey, K. Daifalla, S. Günther: Financial Interests, Personal, Full or part-time Employment: Mindpeak GmbH. A. Hartmann: Financial Interests, Institutional, Research Funding: Mindpeak GmbH. T. Lang: Financial Interests, Personal, Stocks or ownership: Mindpeak GmbH. All other authors have declared no conflicts of interest.
Resources from the same session
1239P - NHS-Galleri trial enrolment approaches and participant sociodemographic diversity
Presenter: Charles Swanton
Session: Poster session 14
1241P - Decoding the glycan code: Pioneering early detection of non-small cell lung cancer through glycoproteomics
Presenter: Kai He
Session: Poster session 14
1242P - Implementing functional precision oncology in real-world patients: Translating extensive in vitro data into personalized treatment combining genetics and functional assays
Presenter: Dörthe Schaffrin-Nabe
Session: Poster session 14
1243P - Ocular surface squamous neoplasia early diagnosis using an AI-empowered autofluorescence multispectral imaging technique
Presenter: Abbas HABIBALAHI
Session: Poster session 14
1245P - A lymph nodal staging assessment model for various histologic types of small intestinal tumors
Presenter: YOUSHENG LI
Session: Poster session 14
1246P - Detection of alternative lengthening of telomeres (ALT) across cancer types based on tumor-normal multigene panel sequencing
Presenter: Juan Blanco Heredia
Session: Poster session 14
1247P - A detection model for EGFR mutations in lung adenocarcinoma patients based on volatile organic compounds
Presenter: Yunpeng Yang
Session: Poster session 14
1248P - Development of a high performance and noninvasive diagnostic model using blood cell-free microRNAs for multi-cancer early detection
Presenter: Jason Zhang
Session: Poster session 14
1249P - Whole genome sequencing-based cancer diagnostics in routine clinical practice: An interim analysis of two years of real-world data
Presenter: Jeffrey van Putten
Session: Poster session 14
1250P - Assessing lung carcinoma: A retrospective study on volume evaluation, consolidation and infiltration using chest OMX
Presenter: Swarnambiga Ayyachamy
Session: Poster session 14