Abstract 1244P
Background
Immunohistochemical PD-L1 expression, a tissue-based biomarker that predicts response to immune checkpoint therapy, is used to guide treatment decisions in advanced non-small cell lung cancer (NSCLC). Artificial intelligence (AI) technology may optimize PD-L1 scoring in regard to standardization, accuracy and efficiency. However, previous such approaches failed to show consistency across samples derived from different sites and scanning devices.
Methods
We developed an AI software for automated PD-L1 tumor proportion scoring (TPS) according to international guidelines. Four pathologists assessed PD-L1 expression on 146 whole-slide images (WSI) of NSCLC biopsies obtained from three institutions, four scanning hardware types and the Ventana SP263 assay. Pathologists selected one representative region of interest (ROI) per WSI and scored PD-L1 without AI assistance (path-only). After a 2-week washout period, the same pathologists were presented with the same ROIs together with AI results (AI-only). Being able to adjust the AI results, pathologists concluded the final scores (AI+path). In addition, TPS scores were determined globally on the WSIs by the AI without human intervention and were compared against clinical WSI scores.
Results
For the threshold of TPS≥1%, inter-rater agreements between a) pathologist and AI+path, b) pathologist and AI-only, and c) AI-only and AI+path were 86.3%, 85.6%, and 89.7%, respectively (for TPS≥50%: a) 85.6%, b) 80.8%, c) 92.5%). With AI assistance, pathologists scored faster compared to manual scoring (median time: 72 vs. 117 sec/ROI; p<0.01). Additionally, scoring of WSIs by the AI without human intervention showed higher agreement with clinical scores than inter-human agreement (<85%) reported in literature.
Conclusions
Using challenging validation data from three institutions and four scanners, ROI scoring with the support of our AI PD-L1 quantifier showed high agreement with pathologists, while reducing assessment time. Of note, fully automatic global AI scoring on WSIs resulted in equally high agreement rates. These results demonstrate suitability and safety of the AI system for application in clinical routine, ultimately improving accuracy and efficiency of PD-L1 scoring.
Clinical trial identification
Editorial acknowledgement
Legal entity responsible for the study
Mindpeak GmbH.
Funding
Mindpeak GmbH.
Disclosure
R. Erber, C. Schaaf, N. Abele: Financial Interests, Personal, Speaker, Consultant, Advisor: Mindpeak GmbH. R. Banisch, M. Päpper, P. Frey, K. Daifalla, S. Günther: Financial Interests, Personal, Full or part-time Employment: Mindpeak GmbH. A. Hartmann: Financial Interests, Institutional, Research Funding: Mindpeak GmbH. T. Lang: Financial Interests, Personal, Stocks or ownership: Mindpeak GmbH. All other authors have declared no conflicts of interest.
Resources from the same session
1251P - Development of a deep learning algorithm for lung cancer diagnosis using methylation and fragment size profiles of cfDNA
Presenter: Jiyoung Huh
Session: Poster session 14
1252P - Quantitative cell signaling activity profiling of solid tumors to support personalized treatment in the FINPROVE basket trial: Presentation of skin tumor data
Presenter: Diederick Keizer
Session: Poster session 14
1253P - Analytic validation and implementation of OncoDEEP: A pan-cancer comprehensive genomic profiling NGS assay for assessing homologous recombination deficiency (HRD)
Presenter: Marcel Trautmann
Session: Poster session 14
1254P - Retrospective analysis of brain OMX: Diagnostic tool for structural (T1) and functional connectome (RS-FMRI) analysis of brain
Presenter: Swarnambiga Ayyachamy
Session: Poster session 14
1255P - Evaluating GPT-4 as an academic support tool for clinicians: A comparative analysis of case records from the literature
Presenter: Marcos Aurelio Fonseca Magalhaes Filho
Session: Poster session 14
1256P - Value of detection of peripheral blood circRNA based on digital PCR in the diagnosis of lung adenocarcinoma
Presenter: Jihong Zhou
Session: Poster session 14
1257P - Double heterozygous prevalence in hereditary cancer syndromes in Northern Mexico population
Presenter: Carlos Burciaga Flores
Session: Poster session 14
1258P - Does FDG PET-based radiomics have an added value for prediction of overall survival in non-small cell lung cancer?
Presenter: Andrea Ciarmiello
Session: Poster session 14
1260TiP - Enhancing lung nodule discrimination with a novel cfDNA test: The cancer signature ensemble (CSE) approach
Presenter: Young-Chul Kim
Session: Poster session 14
1773P - ICECaP-2: Validation of metastasis-free survival (MFS) as a surrogate for overall survival (OS) in localized prostate cancer (LPC) in a more contemporary era
Presenter: Wanling Xie
Session: Poster session 14