Abstract 1775P
Background
Although deep learning algorithms have shown promising results in medical imaging, their application in predicting adverse pathology events (AP) and biochemical recurrence-free survival (bRFS) in prostate cancer patients is relatively lagging. Here we aimed to evaluate the performance of a novel deep learning network, NAFNet, in predicting AP and bRFS based on pre-treatment multiparametric MRI imaging.
Methods
This multicentre study enrolled 514 prostate cancer patients from six tertiary hospitals throughout China from 2017 and 2021. A total of 367 patients from Fudan University Shanghai Cancer Centre with whole-mount histopathology of radical prostatectomy specimens were assigned to the internal set, and cancer lesions were delineated with whole-mount pathology as the reference. The external test set included 147 patients with BCR data from five other institutes. The prediction model (NAFNet-classifier) and integrated nomogram (DL-nomogram) were constructed based on NAFNet. To evaluate the predictive ability of DL-nomogram for AP, we compared DL-nomogram with radiology score (PI-RADS), and clinical score (Cancer of the Prostate Risk Assessment score (CAPRA)). ROC curves and DCA analyses were performed to assess the AP prediction ability of various models, and survival analyses were also made for bRFS.
Results
After training and validation in the internal set, ROC curves in the external test set showed that NAFNet-classifier alone outperformed ResNet50 in predicting AP (AUC:0.799, 95%CI:0.724-0.873 vs. AUC:0.703, 95%CI:0.618-0.787, P=0.013). The DL-nomogram, including the NAFNet-classifier, clinical T stage and biopsy results, showed the highest AUC (0.915, 95% CI: 0.871-0.959) and accuracy (0.850) compared with the PI-RADS and CAPRA scores. Additionally, the DL-nomogram outperformed the CAPRA score with a higher C-index (0.732, P<0.001) in predicting bRFS.
Conclusions
Our newly-developed deep learning network, NAFNet, combined with clinical factors, accurately predicted AP and poor prognosis in prostate cancer patients from preoperative MRI imaging, providing a potential AI tools in medical imaging risk stratification.
Clinical trial identification
Editorial acknowledgement
Legal entity responsible for the study
B. Dai.
Funding
The Medical Innovation Research Project of the Science and Technology Commission of Shanghai Municipality (20Y11905000) and the Discipline Leader of Shanghai Municipal Health Commission (2022XD01).
Disclosure
All authors have declared no conflicts of interest.
Resources from the same session
1203P - Role of tumor markers before or during chemotherapy for poorly differentiated neuroendocrine carcinomas of the digestive system: An exploratory analysis of JCOG1213
Presenter: Tomoyuki Satake
Session: Poster session 14
1204TiP - Iadademstat in combination with paclitaxel in relapsed/refractory small cell lung carcinoma (SCLC) and extrapulmonary high grade neuroendocrine carcinoma (NEC)
Presenter: Neel Belani
Session: Poster session 14
1212P - Predictive value of a near-term prediction model for severe irAEs in cancer treatment with ICIs
Presenter: Jun Zhao
Session: Poster session 14
1213P - HRD complete: A novel NGS assay for detecting homologous recombination repair (HRR) gene alterations in prostate cancer
Presenter: Xin Ye
Session: Poster session 14
1214P - A novel machine learning based method to detect homozygous deletion of homologous recombination repair (HRR) genes in prostate cancer
Presenter: Jianqing Wang
Session: Poster session 14
1215P - Comparative analysis of cfDNA liquid biopsy and tumor-based next-generation sequencing (NGS) approaches
Presenter: Anastasiya Yudina
Session: Poster session 14
1216P - A spectroscopic liquid biopsy for the earlier detection of multiple cancer types
Presenter: Matthew Baker
Session: Poster session 14
1217P - Clinical evaluation of a CE-IVD liquid biopsy pan cancer genomic profiling test
Presenter: Timothy Crook
Session: Poster session 14
1218P - Exploring cancer care pathways in seven European countries: Identifying obstacles and opportunities for the role of artificial intelligence
Presenter: Shereen Nabhani
Session: Poster session 14