Abstract 2788
Background
Deep learning (DL) is one of the best approaches to predict nonlinear behaviors from high dimensional data. Nevertheless predicting the outcome of patients affected by cancers from transcriptomic data has shown limited performance, even with DL (C-index usually <0.65). Transfer learning is a DL two-step method where a model is pre-trained for a basic task on large amount of data, and then fine-tuned on the aimed task. We hypothesized that using TL with RNAseq may improve the performances of cancer patients’ outcome estimation.
Methods
The model was a Multi-Mayer Perceptron (MLP) with 22913 inputs corresponding to genes bulk tumor whole genome RNAseq expression analysis. An important restriction was applied to the number of units at second layer (N = 100), with further linear decrease across subsequent layers. Architecture of the model (number of layers, skip connections), L1 normalization value and learning rate were optimized by grid search on 30 parallel models. Training was performed using Keras package in R. Data were split into 70% training, 15% cross validation, 15% validation for each step, without contamination between the 2 transfer learning steps. The pre-training step consisted in predicting the organs of sample origin using 17.487 public RNAseq data of normal & cancer tissues (GTEX from gtexportal.org & TCGA from cBioportal.org). Fine-tuning on patients survival used 6401 training tumors. The model’s performance on survival prediction was evaluated by C-index and the area under the survival receiver-operating characteristic curve (AUROC).
Results
The pre-training using GTEx and TCGA reached very high performance with validation accuracy of 0.96 to predict organ of origins for the best model (all models had validation accuracy > 0.9). Fine-tuning on survival, the prognostic performance of the best model on the validation cohort was C-index=0.74 and AUROC= 0.81 (80% of models had a C-index > 0.6). The best model had 8 hidden layers and a small penalization value.
Conclusions
Thanks to this original transfer learning method, we achieved a high performance to estimate cancer patients’ prognostic from whole genome expression, a classically challenging task. Learning on public databases is a valuable method of DL for personalized cancer care.
Clinical trial identification
Legal entity responsible for the study
The authors.
Funding
Has not received any funding.
Disclosure
E. Angevin: Advisory / Consultancy: Amgen; Advisory / Consultancy: Astellas; Advisory / Consultancy: AstraZeneca; Advisory / Consultancy: Bayer; Advisory / Consultancy: BeiGene; Advisory / Consultancy: BMS; Advisory / Consultancy: Celgene; Advisory / Consultancy: DebioPharma; Advisory / Consultancy: Genentech; Advisory / Consultancy: Ipsen; Advisory / Consultancy: Janssen; Advisory / Consultancy: Lilly; Advisory / Consultancy: MedImmune; Advisory / Consultancy: Novartis; Advisory / Consultancy: Pfizer; Advisory / Consultancy: Roche; Advisory / Consultancy: Sanofi; Advisory / Consultancy: Orion. A. Hollebecque: Advisory / Consultancy: Amgen; Advisory / Consultancy: Spectrum Pharmaceuticals; Advisory / Consultancy: Lilly; Advisory / Consultancy: Debiopharm; Travel / Accommodation / Expenses: Servier; Travel / Accommodation / Expenses: Amgen; Travel / Accommodation / Expenses: Lilly; Travel / Accommodation / Expenses: Incyte; Travel / Accommodation / Expenses: Debiopharm. E. Deutsch: Advisory / Consultancy: Boehringer; Advisory / Consultancy: Medimune; Advisory / Consultancy: Amgen; Research grant / Funding (self): AstraZeneca; Research grant / Funding (self): biotrachea; Research grant / Funding (institution): BristolMyersSquidd; Research grant / Funding (self): Clevelex; Research grant / Funding (self): EDF; Research grant / Funding (self): Lilly; Research grant / Funding (self): GlaxoSmisthKline; Research grant / Funding (self): Merk; Research grant / Funding (self): Nanobiotix; Research grant / Funding (self): Oseo; Research grant / Funding (self): Ray Search Laboratory; Research grant / Funding (self): Roche; Research grant / Funding (self): Ipsen; Research grant / Funding (self): Servier; Research grant / Funding (self): Takeda. C. Massard: Advisory / Consultancy: Amgen; Advisory / Consultancy: Astellas; Advisory / Consultancy: AstraZeneca; Advisory / Consultancy: Bayer; Advisory / Consultancy: BeiGene; Advisory / Consultancy: BMS; Advisory / Consultancy: Celgene; Advisory / Consultancy: DebioPharma; Advisory / Consultancy: Genentech; Advisory / Consultancy: Ipsen; Advisory / Consultancy: Janssen; Advisory / Consultancy: Lilly; Advisory / Consultancy: MedImmune; Advisory / Consultancy: Novartis; Advisory / Consultancy: Pfizer; Advisory / Consultancy: Roche; Advisory / Consultancy: Sanofi; Advisory / Consultancy: Orion. L. Verlingue: Research grant / Funding (self): Bristol-Myers Squibb; Advisory / Consultancy: Pierre Fabre; Advisory / Consultancy: Adaptherapy. All other authors have declared no conflicts of interest.
Resources from the same session
2671 - Luminal B breast cancer prognosis prediction by comprehensive analysis of Homeobox genes
Presenter: Ayako Nakashoji
Session: Poster Display session 3
Resources:
Abstract
2650 - Long non-coding RNA E2F4as promotes tumor progression and predicts patient prognosis in human ovarian cancer
Presenter: Sun-Ae Park
Session: Poster Display session 3
Resources:
Abstract
1462 - FGF19 promotes esophageal squamous cell carcinoma progression by inhibiting autophagy
Presenter: Lisha Ying
Session: Poster Display session 3
Resources:
Abstract
5787 - Proof of concept on the role of ex vivo lung cancer spheroids, cytokines expression and PBMCs profiling in monitoring disease history and response to treatments.
Presenter: Raimondo Di Liello
Session: Poster Display session 3
Resources:
Abstract
5253 - Circulating microRNAs related to DNA damage response as predictors of survival in metastatic non- small cell lung cancer patients treated with platinum-based chemotherapy
Presenter: Dimitris Mavroudis
Session: Poster Display session 3
Resources:
Abstract
5286 - Prognostic value of CTCs in advanced NSCLC patients treated with platinum-based chemotherapy
Presenter: Silvia Calabuig-Fariñas
Session: Poster Display session 3
Resources:
Abstract
5781 - Exosomes in NSCLC as a source of biomarkers
Presenter: Elena Duréndez
Session: Poster Display session 3
Resources:
Abstract
1447 - The role of Pim-1 in the development and progression of papillary thyroid carcinoma
Presenter: Xin Zhu
Session: Poster Display session 3
Resources:
Abstract
1323 - Development and Validation of a RNA-Seq Based Prognostic Signature in Neuroblastoma
Presenter: Jian-Guo Zhou
Session: Poster Display session 3
Resources:
Abstract
3290 - Identification of meningioma patients in high risk of tumor recurrence using microRNA profiling
Presenter: Josef Srovnal
Session: Poster Display session 3
Resources:
Abstract