Abstract 2788
Background
Deep learning (DL) is one of the best approaches to predict nonlinear behaviors from high dimensional data. Nevertheless predicting the outcome of patients affected by cancers from transcriptomic data has shown limited performance, even with DL (C-index usually <0.65). Transfer learning is a DL two-step method where a model is pre-trained for a basic task on large amount of data, and then fine-tuned on the aimed task. We hypothesized that using TL with RNAseq may improve the performances of cancer patients’ outcome estimation.
Methods
The model was a Multi-Mayer Perceptron (MLP) with 22913 inputs corresponding to genes bulk tumor whole genome RNAseq expression analysis. An important restriction was applied to the number of units at second layer (N = 100), with further linear decrease across subsequent layers. Architecture of the model (number of layers, skip connections), L1 normalization value and learning rate were optimized by grid search on 30 parallel models. Training was performed using Keras package in R. Data were split into 70% training, 15% cross validation, 15% validation for each step, without contamination between the 2 transfer learning steps. The pre-training step consisted in predicting the organs of sample origin using 17.487 public RNAseq data of normal & cancer tissues (GTEX from gtexportal.org & TCGA from cBioportal.org). Fine-tuning on patients survival used 6401 training tumors. The model’s performance on survival prediction was evaluated by C-index and the area under the survival receiver-operating characteristic curve (AUROC).
Results
The pre-training using GTEx and TCGA reached very high performance with validation accuracy of 0.96 to predict organ of origins for the best model (all models had validation accuracy > 0.9). Fine-tuning on survival, the prognostic performance of the best model on the validation cohort was C-index=0.74 and AUROC= 0.81 (80% of models had a C-index > 0.6). The best model had 8 hidden layers and a small penalization value.
Conclusions
Thanks to this original transfer learning method, we achieved a high performance to estimate cancer patients’ prognostic from whole genome expression, a classically challenging task. Learning on public databases is a valuable method of DL for personalized cancer care.
Clinical trial identification
Legal entity responsible for the study
The authors.
Funding
Has not received any funding.
Disclosure
E. Angevin: Advisory / Consultancy: Amgen; Advisory / Consultancy: Astellas; Advisory / Consultancy: AstraZeneca; Advisory / Consultancy: Bayer; Advisory / Consultancy: BeiGene; Advisory / Consultancy: BMS; Advisory / Consultancy: Celgene; Advisory / Consultancy: DebioPharma; Advisory / Consultancy: Genentech; Advisory / Consultancy: Ipsen; Advisory / Consultancy: Janssen; Advisory / Consultancy: Lilly; Advisory / Consultancy: MedImmune; Advisory / Consultancy: Novartis; Advisory / Consultancy: Pfizer; Advisory / Consultancy: Roche; Advisory / Consultancy: Sanofi; Advisory / Consultancy: Orion. A. Hollebecque: Advisory / Consultancy: Amgen; Advisory / Consultancy: Spectrum Pharmaceuticals; Advisory / Consultancy: Lilly; Advisory / Consultancy: Debiopharm; Travel / Accommodation / Expenses: Servier; Travel / Accommodation / Expenses: Amgen; Travel / Accommodation / Expenses: Lilly; Travel / Accommodation / Expenses: Incyte; Travel / Accommodation / Expenses: Debiopharm. E. Deutsch: Advisory / Consultancy: Boehringer; Advisory / Consultancy: Medimune; Advisory / Consultancy: Amgen; Research grant / Funding (self): AstraZeneca; Research grant / Funding (self): biotrachea; Research grant / Funding (institution): BristolMyersSquidd; Research grant / Funding (self): Clevelex; Research grant / Funding (self): EDF; Research grant / Funding (self): Lilly; Research grant / Funding (self): GlaxoSmisthKline; Research grant / Funding (self): Merk; Research grant / Funding (self): Nanobiotix; Research grant / Funding (self): Oseo; Research grant / Funding (self): Ray Search Laboratory; Research grant / Funding (self): Roche; Research grant / Funding (self): Ipsen; Research grant / Funding (self): Servier; Research grant / Funding (self): Takeda. C. Massard: Advisory / Consultancy: Amgen; Advisory / Consultancy: Astellas; Advisory / Consultancy: AstraZeneca; Advisory / Consultancy: Bayer; Advisory / Consultancy: BeiGene; Advisory / Consultancy: BMS; Advisory / Consultancy: Celgene; Advisory / Consultancy: DebioPharma; Advisory / Consultancy: Genentech; Advisory / Consultancy: Ipsen; Advisory / Consultancy: Janssen; Advisory / Consultancy: Lilly; Advisory / Consultancy: MedImmune; Advisory / Consultancy: Novartis; Advisory / Consultancy: Pfizer; Advisory / Consultancy: Roche; Advisory / Consultancy: Sanofi; Advisory / Consultancy: Orion. L. Verlingue: Research grant / Funding (self): Bristol-Myers Squibb; Advisory / Consultancy: Pierre Fabre; Advisory / Consultancy: Adaptherapy. All other authors have declared no conflicts of interest.
Resources from the same session
5603 - Development of a comprehensive next-generation targeted sequencing assay for detection of gene-fusions in solid tumors
Presenter: Vinay Mittal
Session: Poster Display session 3
Resources:
Abstract
4952 - Next-generation sequencing for better treatment strategy of cancer of unknown primary (CUP)
Presenter: Kang Kook Lee
Session: Poster Display session 3
Resources:
Abstract
4590 - Circulating-free DNA analysis from long-term surviving metastatic colorectal cancer patients undergoing surgery for resectable disease.
Presenter: Michele Ghidini
Session: Poster Display session 3
Resources:
Abstract
3696 - Ultra-sensitive detection of circulating tumor DNA identifies patients in high risk of recurrence in early stages melanoma
Presenter: Filip Janku
Session: Poster Display session 3
Resources:
Abstract
4295 - Identification of the founder BRCA1 mutation c.4117G>T (p.Glu1373*) recurring in Abruzzo and Lazio regions of Central Italy and predisposing to breast/ovarian and BRCA1-related cancers
Presenter: Daniela Di Giacomo
Session: Poster Display session 3
Resources:
Abstract
2214 - Enzalutamide (ENZA) and Apalutamide (APA) In vitro chemical reactivity studies and Activity in a Mouse Drug Allergy Model (MDAM)
Presenter: Mausumee Guha
Session: Poster Display session 3
Resources:
Abstract
5044 - Influence of genetic variation in COMT on cisplatin-induced nephrotoxicity in cancer patients.
Presenter: Bram Agema
Session: Poster Display session 3
Resources:
Abstract
3293 - Cardioprotective and anti-inflammatory effects of Empagliflozin during treatment with Doxorubicin: a cellular and preclinical study
Presenter: Vincenzo Quagliariello
Session: Poster Display session 3
Resources:
Abstract
3324 - Breast Cancer Organoids Model Treatment Response of HER2 Targeted Therapy in HER2-mutant Breast Cancer
Presenter: Xuelu Li
Session: Poster Display session 3
Resources:
Abstract
2115 - Preclinical in vivo screening to predict responder patients depend on EGFR status
Presenter: Yejin Kim
Session: Poster Display session 3
Resources:
Abstract