Oops, you're using an old version of your browser so some of the features on this page may not be displaying properly.

MINIMAL Requirements: Google Chrome 24+Mozilla Firefox 20+Internet Explorer 11Opera 15–18Apple Safari 7SeaMonkey 2.15-2.23

Poster Display session 3

2671 - Luminal B breast cancer prognosis prediction by comprehensive analysis of Homeobox genes


30 Sep 2019


Poster Display session 3


Translational Research

Tumour Site

Breast Cancer


Ayako Nakashoji


Annals of Oncology (2019) 30 (suppl_5): v760-v796. 10.1093/annonc/mdz268


A. Nakashoji1, T. Hayashida2, S. Yamaguchi1, Y. Kitagawa1

Author affiliations

  • 1 Department Of Surgery, Keio University School of Medicine, 160-8582 - Tokyo/JP
  • 2 Department Of Surgery, Keio University School of Medicine, 160-0016 - Tokyo/JP


Login to access the resources on OncologyPRO.

If you do not have an ESMO account, please create one for free.

Abstract 2671


Homeobox (HOX) family consists of 39 genes which act as master regulators in embryonic development. Each of the genes is also known to play key roles in progression of breast cancer, including epithelial to mesenchymal transition, tumor angiogenesis and endocrine therapy resistance. Although there are numerous reports on individual HOX genes and cancer, none of them have comprehensively analyzed the whole gene family. Since HOX genes strongly coordinate within the family during the embryonic period, we considered that the analysis of the whole HOX family is also indispensable in breast cancer.


We collected 702 breast cancer data from four publicly available array datasets (GSE11121, GSE7390, GSE3494, GSE2990) and performed unsupervised hierarchal clustering into two clusters by the expression of HOX genes. We constructed model formulas for cluster prediction by dividing the samples into learning and validation groups. We used three machine learning methods: support-vector machine (SVM), neural network and Bayes. The model formulas were validated by validation samples. We also used 512 TCGA breast cancer data to calculate covariations of the genes in breast cancer.


By the clustering of four array datasets, the DFS of the two clusters in PAM50-classified luminal B patients were statistically different (p = 0.016), and the gene ontology analysis revealed that the Wnt pathway was activated in the poor prognostic cluster. All cluster prediction models for luminal B sample achieved accuracies of over 90%. From TCGA breast cancer data, we found that HOX genes covariate the most with other HOX genes, especially within the chromosomally proximal groups.


Comprehensive analysis of the whole HOX family lead to the prediction of luminal B breast cancer prognosis. Considering that Wnt signaling controls HOX genes during the embryonic stage, we suppose a Wnt pathway activated, poor prognostic subgroup in luminal B breast cancer which can be identified by the expression of HOX genes. The cluster prediction model by machine learning was acceptable for its future adaptation in clinical settings. We also proved that HOX genes strongly covariate within the gene family in cancer, not only during the embryonic stage.

Clinical trial identification

Editorial acknowledgement

Legal entity responsible for the study

The authors.


Has not received any funding.


All authors have declared no conflicts of interest.

This site uses cookies. Some of these cookies are essential, while others help us improve your experience by providing insights into how the site is being used.

For more detailed information on the cookies we use, please check our Privacy Policy.

Customise settings
  • Necessary cookies enable core functionality. The website cannot function properly without these cookies, and you can only disable them by changing your browser preferences.