Abstract 2788
Background
Deep learning (DL) is one of the best approaches to predict nonlinear behaviors from high dimensional data. Nevertheless predicting the outcome of patients affected by cancers from transcriptomic data has shown limited performance, even with DL (C-index usually <0.65). Transfer learning is a DL two-step method where a model is pre-trained for a basic task on large amount of data, and then fine-tuned on the aimed task. We hypothesized that using TL with RNAseq may improve the performances of cancer patients’ outcome estimation.
Methods
The model was a Multi-Mayer Perceptron (MLP) with 22913 inputs corresponding to genes bulk tumor whole genome RNAseq expression analysis. An important restriction was applied to the number of units at second layer (N = 100), with further linear decrease across subsequent layers. Architecture of the model (number of layers, skip connections), L1 normalization value and learning rate were optimized by grid search on 30 parallel models. Training was performed using Keras package in R. Data were split into 70% training, 15% cross validation, 15% validation for each step, without contamination between the 2 transfer learning steps. The pre-training step consisted in predicting the organs of sample origin using 17.487 public RNAseq data of normal & cancer tissues (GTEX from gtexportal.org & TCGA from cBioportal.org). Fine-tuning on patients survival used 6401 training tumors. The model’s performance on survival prediction was evaluated by C-index and the area under the survival receiver-operating characteristic curve (AUROC).
Results
The pre-training using GTEx and TCGA reached very high performance with validation accuracy of 0.96 to predict organ of origins for the best model (all models had validation accuracy > 0.9). Fine-tuning on survival, the prognostic performance of the best model on the validation cohort was C-index=0.74 and AUROC= 0.81 (80% of models had a C-index > 0.6). The best model had 8 hidden layers and a small penalization value.
Conclusions
Thanks to this original transfer learning method, we achieved a high performance to estimate cancer patients’ prognostic from whole genome expression, a classically challenging task. Learning on public databases is a valuable method of DL for personalized cancer care.
Clinical trial identification
Legal entity responsible for the study
The authors.
Funding
Has not received any funding.
Disclosure
E. Angevin: Advisory / Consultancy: Amgen; Advisory / Consultancy: Astellas; Advisory / Consultancy: AstraZeneca; Advisory / Consultancy: Bayer; Advisory / Consultancy: BeiGene; Advisory / Consultancy: BMS; Advisory / Consultancy: Celgene; Advisory / Consultancy: DebioPharma; Advisory / Consultancy: Genentech; Advisory / Consultancy: Ipsen; Advisory / Consultancy: Janssen; Advisory / Consultancy: Lilly; Advisory / Consultancy: MedImmune; Advisory / Consultancy: Novartis; Advisory / Consultancy: Pfizer; Advisory / Consultancy: Roche; Advisory / Consultancy: Sanofi; Advisory / Consultancy: Orion. A. Hollebecque: Advisory / Consultancy: Amgen; Advisory / Consultancy: Spectrum Pharmaceuticals; Advisory / Consultancy: Lilly; Advisory / Consultancy: Debiopharm; Travel / Accommodation / Expenses: Servier; Travel / Accommodation / Expenses: Amgen; Travel / Accommodation / Expenses: Lilly; Travel / Accommodation / Expenses: Incyte; Travel / Accommodation / Expenses: Debiopharm. E. Deutsch: Advisory / Consultancy: Boehringer; Advisory / Consultancy: Medimune; Advisory / Consultancy: Amgen; Research grant / Funding (self): AstraZeneca; Research grant / Funding (self): biotrachea; Research grant / Funding (institution): BristolMyersSquidd; Research grant / Funding (self): Clevelex; Research grant / Funding (self): EDF; Research grant / Funding (self): Lilly; Research grant / Funding (self): GlaxoSmisthKline; Research grant / Funding (self): Merk; Research grant / Funding (self): Nanobiotix; Research grant / Funding (self): Oseo; Research grant / Funding (self): Ray Search Laboratory; Research grant / Funding (self): Roche; Research grant / Funding (self): Ipsen; Research grant / Funding (self): Servier; Research grant / Funding (self): Takeda. C. Massard: Advisory / Consultancy: Amgen; Advisory / Consultancy: Astellas; Advisory / Consultancy: AstraZeneca; Advisory / Consultancy: Bayer; Advisory / Consultancy: BeiGene; Advisory / Consultancy: BMS; Advisory / Consultancy: Celgene; Advisory / Consultancy: DebioPharma; Advisory / Consultancy: Genentech; Advisory / Consultancy: Ipsen; Advisory / Consultancy: Janssen; Advisory / Consultancy: Lilly; Advisory / Consultancy: MedImmune; Advisory / Consultancy: Novartis; Advisory / Consultancy: Pfizer; Advisory / Consultancy: Roche; Advisory / Consultancy: Sanofi; Advisory / Consultancy: Orion. L. Verlingue: Research grant / Funding (self): Bristol-Myers Squibb; Advisory / Consultancy: Pierre Fabre; Advisory / Consultancy: Adaptherapy. All other authors have declared no conflicts of interest.
Resources from the same session
2142 - Low NK Cell Abundance Correlates with High Expression of PD-1 in CD8+ T Cells
Presenter: Moon Hee Lee
Session: Poster Display session 3
Resources:
Abstract
5501 - Tobacco smoking is associated with the immune suppressive microenvironment in head and neck squamous cell carcinoma (HNSCC)
Presenter: Christine Chung
Session: Poster Display session 3
Resources:
Abstract
5726 - Evaluation of Antibody-Dependent Cell Cytotoxicity (ADCC) in lung cancer cell lines treated with combined anti-EGFR and anti-PD-L1 therapy.
Presenter: Francesca Sparano
Session: Poster Display session 3
Resources:
Abstract
2534 - Radiomic Signatures for Identification of Tumors Sensitive to Nivolumab or Docetaxel in Squamous Non-Small Cell Lung Cancer (sqNSCLC)
Presenter: Laurent Dercle
Session: Poster Display session 3
Resources:
Abstract
3366 - Analysis of gut microbiota in advanced non-small cell lung cancer (NSCLC) patients treated with immune-checkpoints blockers
Presenter: FEIYU ZHANG
Session: Poster Display session 3
Resources:
Abstract
2089 - Pathogenesis of Myocarditis Following Treatment with Immune Checkpoint Inhibitors in a Cynomolgus Monkey Model
Presenter: Changhua Ji
Session: Poster Display session 3
Resources:
Abstract
4463 - Effects of dietary restriction in cancer patients receiving irinotecan
Presenter: Ruben Van Eerden
Session: Poster Display session 3
Resources:
Abstract
4841 - Investigating the Link between Burn Injury and Tumorigenesis
Presenter: Lucy Barrett
Session: Poster Display session 3
Resources:
Abstract
4619 - Prognostic value of the neutrophil-lymphocyte, platelet-lymphocyte and monocyte-lymphocyte ratio in male breast cancer patients
Presenter: Joanna Huszno
Session: Poster Display session 3
Resources:
Abstract
1122 - Platelets from metastatic cancer patients have increased aggregation and activation
Presenter: Meera Chauhan
Session: Poster Display session 3
Resources:
Abstract